No. of Printed Pages : 7
BCS-054
BACHELOR OF COMPUTER APPLICATIONS (BCA) (REVISED)

Term-End Examination

June, 2021

BCS-054 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time : 3 Hours
Maximum Marks : 100
Note: (i) Any calculator is allowed during examination.
(ii) Question No. 1 is compulsory. Attempt any three more from the next four questions.

1. (a) Consider the following decimal floating point representation for a number having base 10 :

3

Which of the following numbers are not in normalised form ? Convert all the numbers to normalised form :
(i)

(ii)

-	1	2	3	4	+	0	0

(iii)

(b) Solve the following system of equations using Gauss-elimination method. Does this method produce a solution for this system?

$$
\begin{array}{r}
6 x+2 y+4 z=6 \\
3 x+2 y+z=3 \\
2 x+y+z=0
\end{array}
$$

(c) Find the smallest positive root for the equation using bi-section method :

$$
x^{3}+3 x^{2}-6=0
$$

Show three iterations.
(d) Construct the difference table for the data:

x	$f(x)$
1	6
2	12
3	18
4	25

List the forward differences for $f(1)$ and backward differences for $f(4)$.
(e) Write the notation and the formula in terms of $f(x)$ and h for the following :
(i) Central difference
(ii) Shift operator
(f) Find the Newton's forward-difference interpolating polynomial which agrees with the table of values given below: 7

x	$f(x)$
1	5
2	14
3	27
4	44
5	65
6	90

Using this polynomial, find the value of $f(1.25)$.
(g) Evaluate the integral $\mathrm{I}=\int_{0}^{0.4} \frac{d x}{(1+2 x)^{2}}$ by using Simpson's $1 / 3$ rd rule, by dividing the interval into four equal sub-intervals. 7
(h) Find the order and degree of the following differential equation :

2

$$
5\left(\frac{d^{3} y}{d x^{3}}\right)^{3}+12\left(\frac{d y}{d x}\right)-3 x\left(\frac{d^{2} y}{d x^{2}}\right)^{4}=0
$$

(i) Write the formula for finding the numerical differentiation ($\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$) using backward difference formula.
2. (a) Perform the following floating point operations (assume the maximum mantissa size to be of 4 decimal digits). Use chopping wherever required (answer should be in normalised form) :
(i) add 0.2345×10^{5} and -0.2205×10^{5}
(ii) subtract 0.6101×10^{2} from

$$
0.2016 \times 10^{5}
$$

(iii) multiply 0.28×10^{-3} and 0.221×10^{4}
(b) Using the Gauss-Seidel iterative method, solve the following system of linear equations:

$$
\begin{aligned}
& 2 x+y=7 \\
& x+4 y=14
\end{aligned}
$$

Use the initial values $x_{0}=y_{0}=1$. Perform only two iterations.
(c) Using Newton-Raphson method, find the cube root of 10 with initial value as 2 . Perform 3 iterations.
3. (a) Derive the relationship between E and the following operators:

6
(i) ∇
(ii) δ
(iii) μ
(b) Find the value of α in the following data, if $f(x)$ represents a polynomial of degree $3: 6$

x	$f(x)$
1	7
2	15
3	α
4	73
5	135

(c) Find the Lagrange's interpolating polynomial for the following data :

x	$f(x)$
1	4
3	18
7	70

Hence evaluate $f(4)$ using the interpolating polynomial.
4. (a) The values of $y=x^{1.5}$ are given below for $x=1(1) 5$. Find the value of y^{\prime} and $y^{\prime \prime}$ at $x=1.5$ using F-D formula :

x	$f(x): y=x^{1.5}$
1	1
2	2.8284
3	5.1962
4	8

| Using Euler's method, solve the |
| :--- | :--- |
| differential equation : |

$$
y^{\prime}=x^{3}+y^{2}
$$

where $y(0)=1$. Find the solution on $[0,0.4]$ with $h=0.1$.
5. (a) Assuming the decimal floating point representation given in Q. 1 (c), identify what problems will be encountered, if you perform the following operations. Explain the problem and propose solution, if any : 6
(i) Adding 0.6005×10^{99} with

$$
0.4150 \times 10^{99}
$$

(ii) Adding $0.6705 \times 10^{12}, 0.6685 \times 10^{5}$ and -0.6705×10^{12}
(iii) Dividing 0.2003×10^{-53} by

$$
-0.5000 \times 10^{49}
$$

(b) How is truncation error related to Taylor series ? Explain with the help of an example.

4
(c) For a given value of h, find the values of Δ, Δ^{2} and Δ^{3}, if $f(x)=x^{2}$. 5
(d) Derive the formula of Trapezoidal rule using a diagram.

