No. of Printed Pages : 7

BACHELOR OF COMPUTER

APPLICATIONS (BCA) (REVISED)

Term-End Examination

June, 2021

BCS-054 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time : 3 Hours

Maximum Marks : 100

BCS-054

- Note: (i) Any calculator is allowed during examination.
 - (ii) Question No. 1 is compulsory. Attempt any three more from the next four questions.
- (a) Consider the following decimal floating point representation for a number having

Which of the following numbers are not in normalised form ? Convert all the numbers to normalised form :

[2]

(iii)	_	0	0	0	1	+	0	2	
-------	---	---	---	---	---	---	---	---	--

(b) Solve the following system of equations using Gauss-elimination method. Does this method produce a solution for this system ?

 $\mathbf{5}$

$$6x + 2y + 4z = 6$$
$$3x + 2y + z = 3$$
$$2x + y + z = 0$$

(c) Find the smallest positive root for the equation using bi-section method : 7

 $x^3 + 3x^2 - 6 = 0$

Show three iterations.

(d) Construct the difference table for the data :

	3
x	f(x)
1	6
2	12
3	18
4	25

List the forward differences for f (1) and backward differences for f (4).

- (e) Write the notation and the formula in terms of f(x) and h for the following : 2
 - (i) Central difference
 - (ii) Shift operator
- (f) Find the Newton's forward-difference interpolating polynomial which agrees with the table of values given below : 7

x	f(x)
1	5
2	14
3	27
4	44
5	65
6	90

Using this polynomial, find the value of f(1.25).

[4]

(g) Evaluate the integral I = $\int_{0}^{0.4} \frac{dx}{(1+2x)^2}$ by

using Simpson's 1/3rd rule, by dividing the interval into four equal sub-intervals. 7

(h) Find the order and degree of the following differential equation : 2

$$5\left(\frac{d^3y}{dx^3}\right)^3 + 12\left(\frac{dy}{dx}\right) - 3x\left(\frac{d^2y}{dx^2}\right)^4 = 0$$

(i) Write the formula for finding the numerical differentiation $\left(\frac{dy}{dx} \operatorname{and} \frac{d^2y}{dx^2}\right)$

using backward difference formula. 4

- 2. (a) Perform the following floating point operations (assume the maximum mantissa size to be of 4 decimal digits). Use chopping wherever required (answer should be in normalised form) : 6
 - (i) add 0.2345×10^5 and -0.2205×10^5
 - (ii) subtract 0.6101×10^2 from 0.2016×10^5

(iii) multiply 0.28×10^{-3} and 0.221×10^{4}

BCS-054

(b) Using the Gauss-Seidel iterative method, solve the following system of linear equations: 6

$$2x + y = 7$$
$$x + 4y = 14$$

Use the initial values $x_0 = y_0 = 1$. Perform only two iterations.

- (c) Using Newton-Raphson method, find the cube root of 10 with initial value as 2. Perform 3 iterations.
- 3. (a) Derive the relationship between E and the following operators : 6
 - (i) ∇
 - (ii) δ
 - (iii) µ
 - (b) Find the value of α in the following data, iff (x) represents a polynomial of degree 3 : 6

x	f(x)
1	7
2	15
3	α
4	73
5	135

(c) Find the Lagrange's interpolating polynomial for the following data : 8

x	f(x)
1	4
3	18
7	70

Hence evaluate f (4) using the interpolating polynomial.

4. (a) The values of $y = x^{1.5}$ are given below for x = 1(1)5. Find the value of y' and y" at x = 1.5 using F-D formula : 10

x	$f(x): y = x^{1.5}$
1	1
2	2.8284
3	5.1962
4	8

(b) Using Euler's method, solve the differential equation : 10

$$y' = x^3 + y^2,$$

where y(0) = 1. Find the solution on [0, 0.4] with h = 0.1.

BCS-054

- 5. (a) Assuming the decimal floating point representation given in Q. 1 (c), identify what problems will be encountered, if you perform the following operations. Explain the problem and propose solution, if any : 6
 - (i) Adding 0.6005×10^{99} with

 0.4150×10^{99}

- (ii) Adding 0.6705 × 10^{12} , 0.6685 × 10^5 and -0.6705×10^{12}
- (iii) Dividing 0.2003×10^{-53} by

 -0.5000×10^{49}

- (b) How is truncation error related to Taylor series ? Explain with the help of an example.
- (c) For a given value of h, find the values of Δ , Δ^2 and Δ^3 , if $f(x) = x^2$. 5
- (d) Derive the formula of Trapezoidal rule using a diagram. 5