No. of Printed Pages : 4

MMTE-005

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

MMTE-005 : CODING THEORY

Time : 2 Hours]

[Maximum : Marks: 50

(Weightage : 50%)

Note: Answer any four questions from questions 1 to 5 Questions 6 is compulsory. All questions carry equal marks. Use of calculator is not allowed.

- (a) Give an example, with justification of each of the following: 6
 - (i) Linear code
 - (ii) Hamming distance
 - (iii) Cyclic code
 - (b) Define a linear perfect code. Show that the(7, 4, 3) binary Hamming code is perfect. 4
- (a) Construct the generating idempotents of all duadic codes of length 23 over F₂.

MMTE-005 / 560 / 4

(1)

(b) Let C be the binary code with genetator matrix

$$G = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
. Find the weight distribution

3. (a) Let C be the narrow-sense binary BCH code of designed distance $\delta = 5$, which has a difining set $T = \{1, 2, 3, 4, 6, 8, 9, 12\}$. Let α be a primitive 15th root of unity, where $\alpha^4 = I + \alpha$, and let the generator polynomial of С be $g(x) = 1 + x^4 + x^6 + x^7 + x^8.$ lf У (x) $v(x) = x + x^4 + x^7 + x^8 + x^{11} + x^{13}$ is received, find the transmitted code word. You can use the following table: 6

0000	0	1000	α^3	1011	α ⁷	1110	α^{11}
0001	1	0011	α4	0101	α ⁸	1111	α^{12}
0010	α	0110	α ⁵	1010	α ⁹	1101	α^{13}
0100	α^2	1100	α^6	0111	α^{10}	1001	α^{14}

(b) For a prime q, define a q-cuclotonic coset C_s of s module $(q^t - 1)$. Compute all the 2-cyclotonic cosets module 7. 4

- 4. (a) For positive integers *r*, *m*; *r* < *m*; explain the construction of the need-muller code R (r, m).
 Write the generator matrix G (1, 3) of R (1, 2).
 - (b) Find the convotutional code (2, 1) with generator matrix G = [1,1+D], for the message m=1+D+D².
- 5. (a) List all the code words of the code C over Z_4 generated by $\begin{bmatrix} 1 & 2 & 3 & 0 & 1 \\ 2 & 2 & 0 & 1 & 1 \end{bmatrix}$. Also find the lee weight distribution of this code.
 - (b) Draw the Tanner graph of the code C, with pairity check matrix

1	0	0	0	1	0	1	1	0	1	
1 0 0 0	1	0	0	1	1	0	0	1	0	
0	0	1	0	0	1	1	0	0	1	
0	0	0	1	0	0	1	1	1	0	

6. Which of the following statements are True and which are False? Give reasons for your answers.
 Marks will only be given for valid reasons: 10

- (i) The number of polynomials over a finite field is finite.
- (ii) There is a quadratic residue code of length 7 over F₃.
- (iii) The length of a self and code cannot be odd.
- (iv) The code $\{0, 1\}$ is a perfect code over F_2 .
- (v) Every convolutional code is a cylic code.

—x—