M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

MMTE-005 : CODING THEORY

Abstract

Time : 2 Hours] [Maximum : Marks: 50 (Weightage: 50\%)

Note: Answer any four questions from questions 1 to 5 Questions 6 is compulsory. All questions carry equal marks. Use of calculator is not allowed.

1. (a) Give an example, with justification of each of the following:
(i) Linear code
(ii) Hamming distance
(iii) Cyclic code
(b) Define a linear perfect code. Show that the $(7,4,3)$ binary Hamming code is perfect. 4
2. (a) Construct the generating idempotents of all duadic codes of length 23 over F_{2}.
(b) Let C be the binary code with genetator matrix

of C.
4
3. (a) Let C be the narrow-sense binary BCH code of designed distance $\delta=5$, which has a difining set $T=\{1,2,3,4,6,8,9,12\}$. Let α be a primitive 15th root of unity, where $\alpha^{4}=1+\alpha$, and let the generator polynomial of C be $g(x)=1+x^{4}+x^{6}+x^{7}+x^{8} . \quad$ If $\quad y \quad(x)$ $y(x)=x+x^{4}+x^{7}+x^{8}+x^{11}+x^{13}$ is received, find the transmitted code word. You can use the following table:

000	0	1000	α^{3}	101	α^{7}	1110	α^{11}
0001	1	0011	α^{4}	0101	α^{8}	1111	a
0010	α	0110	α^{5}	1010	α^{9}	1101	α
0100	α^{2}	1100	a^{6}	011	α^{10}	1001	α^{14}

(b) For a prime q , define a q-cuclotonic $\operatorname{coset} \mathrm{C}_{5}$ of s module $\left(q^{t}-1\right)$. Compute all the 2 -cyclotonic cosets module 7.
4. (a) For positive integers $r, m ; r<m$; explain the construction of the need-muller code $R(r, m)$. Write the generator matrix $G(1,3)$ of $R(1,2)$.
(b) Find the convotutional code $(2,1)$ with generator matrix $G=[1,1+D]$, for the message $m=1+D+D^{2}$. 4
5. (a) List all the code words of the code C over Z_{4} generated by $\left[\begin{array}{lllll}1 & 2 & 3 & 0 & 1 \\ 2 & 2 & 0 & 1 & 1\end{array}\right]$. Also find the lee weight distribution of this code.
(b) Draw the Tanner graph of the code C , with pairity check matrix
$\left[\begin{array}{llllllllll}1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0\end{array}\right]$
6. Which of the following statements are True and which are False? Give reasons for your answers. Marks will only be given for valid reasons: 10
(i) The number of polynomials over a finite field is finite.
(ii) There is a quadratic residue code of length 7 over F_{3}.
(iii) The length of a self and code cannot be odd.
(iv) The code $\{0,1\}$ is a perfect code over F_{2}.
(v) Every convolutional code is a cylic code.

