M. SC. (MATHEMATICS WITH
 APPLICATIONS IN COMPUTER SCIENCE) M. Sc. (MACS)
 Term-End Examination
 June, 2020

 MMTE-002 : DESIGN AND ANALYSIS OF

 MMTE-002 : DESIGN AND ANALYSIS OF ALGORITHMS

 ALGORITHMS}

Time : 2 Hours
 Maximum Marks : 50

Note : Question No. 6 is compulsory. Answer any four questions from Question Nos. 1 to 5. Calculators are not allowed.

1. (a) Sort the following numbers using the merge sort algorithm, showing all the steps you use in the process : 5
$15,32,88,78,66,23,79,25,42,37$
(b) Construct a 2-3-4 B-tree by inserting the following numbers in the order given. Show all the steps you have used in the process :

$$
3,1,4,2,8,7,9,6,5,11
$$

P. T. O.
2. (a) Sort the following numbers using the heap sort algorithm, showing all the steps involved :

$$
25,35,11,12,89,68,23
$$

(b) Determine an LCS of AABCBBDAAC and ACBDABBACA, using the dynamic programming approach, showing all the steps involved. 5
3. (a) Find the minimum spanning tree for the following graph using Kruskal's algorithm :

(b) Find all the solutions to the equation $15 x \equiv 12(\bmod 39)$. Show all the steps you have used in the process.
4. (a) Express the following polynomials in pointvalue representation :

$$
\begin{gathered}
f(x)=x^{2}-x+1 \\
g(x)=x^{3}-x^{2}+x+2 .
\end{gathered}
$$

Also find the point-value representation of $f(x) g(x)$, and hence find the coefficient representation of $f(x) g(x)$.
(b) Solve the recurrence relation:

$$
\mathrm{T}(n)=\mathrm{T}\left(\frac{n}{3}\right)+\mathrm{T}\left(\frac{2 n}{3}\right)+\mathrm{O}(n)
$$

using the recursion tree method. 5
5. (a) Give an example, with justification of each of the following :
(i) Optimal substructure
(ii) Overlapping sub-problems
(b) Apply Dijkstra's algorithm for the following example with s as source vertex :

6
6. Which of the following statements are true and which are false ? Justify your answer with a short proof or a counter example :
(i) $\quad 2^{n}=\mathrm{O}\left((2.5)^{n}\right)$.
(ii) Quick sort is always faster than counting sort when applied on an array of numbers.
(iii) The following is an example of max-heap :

(iv) In any binary search tree with n-nodes searching for a key can be done in $\mathrm{O}(\log n)$ time.
(v) The value of the Euler phi-function $\phi(n)$ is always even for $n>2$.

