M. SC. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M. Sc. (MACS)
 Term-End Examination June, 2020
 MMTE-001 : GRAPH THEORY

Time : 2 Hours Maximum Marks: 50
Note: Question No. 7 is compulsory. Answer any four questions from Q. Nos. 1 to 6. Use of calculators is not allowed.

1. (a) Describe the Königsberg bridge problem. Model this using graphs. 4
(b) Draw a graph, with at least four vertices, of your own choice and write its adjacency matrix.
(c) Give an example of a graph that is isomorphic to its complement. Also give an isomorphism from the graph to its complement.
2. (a) Prove that an edge in a graph is a cut-edge if it does not belong to a cycle. Use this to find the number of cut-edges in a tree of $m>0$ edges.
(b) Prove that a k-regular ($k>0$) bipartite graph has the same number of vertices in each partite set.
(c) Let G be a 4 -vertex simple graph whose sub-graphs obtained by deleting one vertex are the following. Determine G :

3. (a) Prove that, in a non-trivial tree there is only one path joining any two of its vertices. 3
(b) If T is a tree of diameter 5 , then prove that the diameter of T is at most 3 .
(c) Check whether the sequence :

$$
6,6,3,3,2,2,2,2,2,2
$$

is graphic or not. If it is, then draw a graph with this degree sequence.
4. (a) Construct a maximum matching of the following graph :

Prove that the constructed matching is a maximum matching.
(b) If G is a bipartite graph, then prove that the maximum size of a matching in it is same as the minimum size of a vertex cover.
(c) Use Dijkstra's shortest path algorithm to find the shortest paths from s to all vertices of the following weighted graph G. Write down all the steps involved in finding the shortest paths.

P. T. O.
5. (a) Describe Greedy colouring algorithm and prove that $\chi(\mathrm{G}) \leq \Delta(\mathrm{G})+1$ for a graph G. 5
(b) Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a connected simple graph of order 10 . Let T be a spanning tree of G having exactly 5 pendent vertices. Show that G has at least 5 vertices which are not cut-vertices. Deduce that every non-trivial simple connected graph has at least two vertices which are not cut-vertices. 5
6. (a) Draw the Peterson graph. Prove that it is non-planar.
(b) If G is a graph of order n at least 3 , then prove that G is Hamiltonian if $\delta(\mathrm{G}) \geq \frac{n}{2} . \quad 5$
7. State whether the following statements are true or false by giving necessary justification :

$$
2 \times 5=10
$$

(a) Every self-complementary graph is connected.
(b) A graph with exactly one spanning tree is always a tree.
(c) Every graph has a perfect matching.
(d) For every graph G, $\chi(\mathrm{G}) \leq \Delta(\mathrm{G})$.
(e) Every Hamiltonian graph of order n has at least $n+1$ spanning trees.

