M. Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M. Sc. (MACS)
 Term-End Examination
 June, 2020

MMT-007 : DIFFERENTIAL EQUATIONS AND NUMERICAL SOLUTIONS

Time : 2 Hours
Maximum Marks : 50
Note : (i) Question No. 1 is compulsory.
(ii) Answer any four questions out of Q. Nos. 2 to 7.
(iii) Use of scientific non-programmable calculator is allowed.

1. State whether the following statements are true or false. Justify your answer with the help of a short proof or a counter example. No marks are awarded for a question without justification :

$$
2 \text { each }
$$

P. T. O.
(a) The Lipschitz constant for the function $f(x, y)=x^{2}|y|$, defined on $|x| \leq 1,|y| \leq 1$ is equal to 1 .
(b) The interval of absolute stability of the 2nd order classical Runge-Kutta method to solve the initial value problem :

$$
\begin{gathered}
y^{\prime}=\lambda y \\
y\left(x_{0}\right)=y_{0}
\end{gathered}
$$

where $\lambda<0$ is]-2, 0 [.
(c) If H_{n} is a Hermit polynomial of degree n, then :

$$
H_{2 n}(0)=\frac{(-1)^{n}\lfloor 2 n+1}{\lfloor n+1}
$$

(d) $L\left[t^{2} \sin 5 t\right]=\frac{3 s^{2}-25}{\left(s^{2}+25\right)^{8}}$, where L is Laplace transform.
(e) The order of the method:
$u_{x x}=\frac{1}{h^{2}}[u(x+h, y)-2 u(x, y)+u(x-h, y)]$
is three.
2. (a) Find a series solution about $x=0$ of the differential equation :

$$
4\left(x^{4}-x^{2}\right) y^{\prime \prime}+8 x^{3} y^{\prime}-y=0
$$

(b) Solve the initial value problem :

$$
\begin{gathered}
y^{\prime}=-2 x y^{2} \\
y(0)=1
\end{gathered}
$$

with $h=0.2$ on the interval $[0,0.4]$. Use fourth order Runge-Kutta method.
(a) Solve :

$$
\frac{\partial u}{\partial t}=2 \frac{\partial^{2} u}{\partial x^{2}}
$$

given that :

$$
\begin{aligned}
& u(0, t)=0 \\
& u(5, t)=0 \\
& u(x, 0)=\sin (\pi x)
\end{aligned}
$$

using Laplace transform.
(b) Find the truncation error and the order of the method : 5
$u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}-4 u_{i, j}=h^{2} G_{i j}$
for the Poisson equation :

$$
u_{x x}+u_{y y}=G(x, y)
$$

P. T. O.
4. (a) Construct Green's function for the b.v.p. : 5

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=x^{2} 0<x<\frac{\pi}{2}, \\
& y(0)=0, y\left(\frac{\pi}{2}\right)=0 .
\end{aligned}
$$

(b) Using Inverse Fourier transform, find $f(x)$ if : 3

$$
F_{c}(\alpha)=\left[\begin{array}{cc}
\left(a-\frac{\alpha}{2}\right) & \alpha \leq 2 a \\
0 & \alpha>2 a
\end{array}\right.
$$

(c) Find the Laplace inverse of $\cot ^{-1} \boldsymbol{s}$. 2
5. (a) Find the solution of the boundary value problem : 5

$$
\begin{gathered}
\nabla^{2} u=x^{2}+y^{2} \\
0 \leq x \leq 1 \\
0 \leq y \leq 1
\end{gathered}
$$

subject to the boundary conditions :

$$
u=\frac{1}{12}\left(x^{4}+y^{4}\right)
$$

on the lines $x=1, y=0, y=1$ and :

$$
12 u+\frac{\partial u}{\partial x}=x^{4}+y^{4}+\frac{x^{3}}{3}
$$

on $x=0$ using the five point formula.
Assume $h=\frac{1}{2}$ along both axes. Use
central difference approximation in the boundary condition.
(b) Find:

5

$$
\mathrm{L}(\sin \sqrt{t})
$$

where .L denotes Laplace transform.
Deduce the value of $\mathrm{L}\left(\frac{\cos \sqrt{t}}{\sqrt{t}}\right)$.
6. (a) Find the solution of the initial boundary value problem :

$$
\begin{gathered}
u_{t}=u_{x x} \\
0 \leq x \leq 1 \\
t>0
\end{gathered}
$$

Р. Т. О.
with conditions :

$$
u(x, 0)=\left[\begin{array}{cc}
2 x, & 0 \leq x \leq \frac{1}{2} \\
2(1-x), & \frac{1}{2} \leq x \leq 1
\end{array}\right.
$$

$u(0, t)=0=u(1, t), t>0$ using Crank-
Nicholson method with $\lambda=\frac{1}{2}$. Assume $h=\frac{1}{4}$ and interpret for one time level.
(b) Find y (0.1), $y(0.2)$ and $\dot{y}(0.3)$ for the equation : 5

$$
\frac{d y}{d x}=x^{2}-y
$$

$y(0)=1$ by using fourth order Taylor series method. Hence obtain \boldsymbol{y} (0.4) using AdamBashforth method with :

$$
\begin{gathered}
\mathrm{P}: y_{n+1}^{p}=y_{n}+\frac{h}{24}\left(55 y_{n}^{\prime}-59 y_{n-1}^{\prime}\right. \\
\\
\left.+37 y_{n-1}^{\prime}-9 y_{n-3}^{\prime}\right) \\
\mathrm{C}: y_{n+1}^{c}=y_{n}+\frac{h}{24}\left(9 y_{n+1}^{\prime}-19 y_{n}^{\prime}\right. \\
\\
\left.-5 y_{n-1}^{\prime}+y_{n-2}^{\prime}\right) .
\end{gathered}
$$

7. (a) Using the substitution $z=\sqrt{x}$, reduce the equation :

$$
x y^{\prime \prime}+y^{\prime}+\frac{y}{4}=0
$$

to Bessel equation and hence write its solution.
(b) Using the generating function for Legendre polynomials $P_{n}, n=0,1,2, \ldots$. prove that:

$$
1+\frac{1}{2} P_{1}(\cos \theta)+\frac{1}{3} P_{2}(\cos \theta)+\ldots \ldots=\ln \left[\frac{1+\sin \left(\frac{\theta}{2}\right)}{\sin \left(\frac{\theta}{2}\right)}\right]
$$

(c) Using Convolution theorem, find the Fourier inverse of the function: 3

$$
\frac{1}{(i \alpha+k)^{2}}, k>0
$$

