M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

MMT-006 : FUNCTIONAL ANALYSIS

Time : $\mathbf{2}$ Hours]
[Maximum : Marks: 50
Weightate: 70\%
Note: Question No. 6 is compulsory. Attempt any four out of question 1 to 5 . Notations are same as in the study material.

1. (a) Use uniform boundedness principle to prove the following:

Let $\left\{a_{n}\right\}$ be a sequence in K with the property that for every $\left\{x_{n}\right\} \in C_{0}$ it follows that $\left\{a_{n} x_{n}\right\} \in C_{0}$. Then $\left\{a_{n}\right\} \in l^{\infty}$. 4
(b) Prove that a closed subspace of a reflexive space is reflexive.
(c) Consider C^{3} with respect to the standard innerproduct. Let $V_{1}=(1,1,0), V_{2}=(1,0,0)$ and $V_{3}=(1,1,1)$. Using the Gram-Schmidt
orthogonalization process, orthonormalise V_{1}, V_{2} and V_{3}.
2. (a) Define the adjoint of a bounded linear operator acting on a Hilbert space. Find the adjoint of the right shift operator on l^{2}.
(b) Let $X=C[0,1]$. Show that there is a $T \in B L(X)$ whose spectrum is a given interval $[a, b]$.

4
(c) Prove that the dual of l^{∞} contains a proper subspace which is linearly isometric to l^{1}. 3
3. (a) Suppose Y is the set of all even functions in $C[-1,1]$. Find the orthogonal complement Y^{1} of Y in $C[-1,1]$ under the inner product on $C[-1,1]$ given by $\langle x, y\rangle=\int_{-1}^{1} x(t) y(t) d t$. ($C[-1.1]$ - the space of all continuous real valued functions on $[-1,1]$).
(b) Let $k:[0,1] \times[0,1] \rightarrow C$ be a square integrable function. Define

$$
\begin{aligned}
& T: L^{2}[0,1] \rightarrow L^{2}[0,1] \text { as } \\
& T(f)(t)=\int_{0}^{1} k(t, s) f(s) d s
\end{aligned}
$$

(i) Show that T is a bounded operator on $L^{2}[0,1]$.
(ii) Show that T is self-adjoint if

$$
k(s, t)=\overline{k(t, s)} . \forall(t, s) \in[0,1] \times[0,1] .
$$

(c) Let X and Y be Banach spaces and $T \in B L(X, Y)$. If $R(T)$ is closed in Y, then show that $R(T)$ is linearly homomorphic to $\frac{X}{Z(T)}$. Is the converse true? Justify your answer. 3
4. (a) Prove that a normal linear space X is separable if its dual space X^{\prime} is separable. Is the converse true? Justify your answer. 6
(b) Define $f: c[-1,1] \rightarrow C$ as
$f(x)=\int_{-1}^{0} x(t) d t-\int_{0}^{1} x(t) d t$
Find $\|f\|$.
5. (a) Let X and Y be Banach space and $F: X \rightarrow Y$ be a one-one bounded linear map.

Prove that its range $R(F)$ is closed in Y if and only if $F^{-1}: R(F) \rightarrow X$ is bounded. 4
(b) Find an infinite orthonormal set in l^{2}.

3
(c) Let X be a normed linear space and $\left\{x_{1}, \ldots \ldots . . . x_{n}\right\}$ be linearly independent in X. Then there exists f_{1}, \ldots, f_{n} in X^{\prime} such that: $f_{j}\left(x_{i}\right)=\delta_{i j} \forall i, j=1 . \ldots \ldots ., n$ when $\delta_{i j}=\left\{\begin{array}{l}1 \text { if } i=j \\ 0 \text { if } i \neq j\end{array}\right\}$
6. (a) Every bounded linear functional on a normed linear space is compact.
(b) The projection map $p: \mathbb{R}^{3}$ to \mathbb{R}^{3} given by $p\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{2}, 0\right)$ is an open map. 2
(c) The closed ball $\left\{x \in l^{2}:\|x\|_{2} \leq 2\right\}$ is compact.
(d) If $T: X \rightarrow Y$ is a continuous linear map, when X and Y are normed linear spaces, then T is uniformly continuous.
(e) l^{p} with the p-norm is an inner product space for all $1<p<\infty$.

