No. of Printed Pages : 4

MMT-006

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

MMT-006 : FUNCTIONAL ANALYSIS

Time : 2 Hours]

[Maximum : Marks: 50

Weightate: 70%

Note: Question No. 6 is compulsory. Attempt any four out of question 1 to 5. Notations are same as in the study material.

1. (a) Use uniform boundedness principle to prove the following:

Let $\{a_n\}$ be a sequence in K with the property that for every $\{x_n\} \in C_0$ it follows that $\{a_n x_n\} \in C_0$. Then $\{a_n\} \in l^{\infty}$.

- (b) Prove that a closed subspace of a reflexive space is reflexive. 3
- (c) Consider C³ with respect to the standard innerproduct. Let $V_1 = (1, 1, 0)$, $V_2 = (1, 0, 0)$ and $V_3 = (1, 1, 1)$. Using the Gram-Schmidt

- 2. (a) Define the adjoint of a bounded linear operator acting on a Hilbert space. Find the adjoint of the right shift operator on l^2 . 3
 - (b) Let X = C[0, 1]. Show that there is a $T \in BL(X)$ whose spectrum is a given interval [a, b].
 - (c) Prove that the dual of l^{∞} contains a proper subspace which is linearly isometric to l^{1} . 3
- (a) Suppose *y* is the set of all even functions in C[-1, 1]. Find the orthogonal complement *y*¹ of *y* in C[-1, 1] under the inner product on

C[-1, 1] given by $\langle x, y \rangle = \int_{-1}^{1} x(t)y(t)dt$. (C[-1, 1] - the space of all continuous real valued functions on [-1, 1]).

(b) Let $k:[0, 1] \times [0, 1] \rightarrow C$ be a square integrable function. Define $T: L^2[0, 1] \rightarrow L^2[0, 1]$ as $T(f)(t) = \int_0^1 k(t, s) f(s) ds$

- (i) Show that T is a bounded operator on $L^2[0, 1]$.
- (ii) Show that T is self-adjoint if $k(s, t) = \overline{k(t, s)}$. $\forall (t, s) \in [0, 1] \times [0, 1]$.
- (c) Let X and Y be Banach spaces and $T \in BL(X, Y)$. If R(T) is closed in Y, then show that R(T) is linearly homomorphic to $\frac{X}{Z(T)}$. Is the converse true? Justify your

answer. 3

(a) Prove that a normal linear space X is separable if its dual space X' is separable.
 Is the converse true? Justify your answer.

(b) Define
$$f:c[-1, 1] \rightarrow C$$
 as

$$f(x) = \int_{-1}^{0} x(t) dt - \int_{0}^{1} x(t) dt$$

Find ||f||. 4

- (a) Let X and Y be Banach space and F: X → Y be a one-one bounded linear map.
 Prove that its range R(F) is closed in Y if and only if F⁻¹: R(F) → X is bounded.
 - (b) Find an infinite orthonormal set in l^2 . 3

4.

5.

(c) Let X be a normed linear space and $\{x_1, \dots, x_n\}$ be linearly independent in X. Then there exists f_1, \dots, f_n in X' such that:

$$f_j(x_i) = \delta_{ij} \quad \forall \ i, j = 1, \dots, n$$

when
$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$
 3

- 6. (a) Every bounded linear functional on a normed linear space is compact. 2
 - (b) The projection map $p: \mathbb{R}^3$ to \mathbb{R}^3 given by $p(x_1, x_2, x_3) = (x_1, x_2, 0)$ is an open map. 2

(c) The closed ball
$$\left\{x \in l^2 : \|x\|_2 \le 2\right\}$$
 is compact.

- (d) If *T* : *X* → *Y* is a continuous linear map, when *X* and *Y* are normed linear spaces, then *T* is uniformly continuous.
- (e) l^p with the p-norm is an inner product space for all 1 .

-x—