M. Sc. (MATHEMATICS WITH

APPLICATIONS IN COMPUTER

 SCIENCE) M. Sc. (MACS)Term-End Examination

June, 2020 MMT-003 : ALGEBRA

Note: Question No. 1 is compulsory. Answer any four questions from Q. No. 2 to 6. Use of calculator is not allowed.

1. State whether the following statements are True or False. Give reasons for your answers :
(i) There exists a field of order 26.
(ii) Any two elements of order 3 in S_{7} are conjugates.
(iii) Every group of order 15 is abelian.
(iv) Every free abelian group is a free group.
(v) $\mathrm{Z}[x]$ has finitely many units.
Р. т. о.
2. (a) If:

$$
\begin{equation*}
\mathrm{G}=\left(\{a\},\left\{g_{0}\right\},\left\{g_{0} \rightarrow a^{3}, g_{0} \rightarrow a^{5} g_{0}\right\}, g_{0}\right) \tag{3}
\end{equation*}
$$

find $L(G)$.
(b) Find the Legendre symbol $\left(\frac{18}{41}\right)$.
(c) Check whether or not: 5

$$
\mathbf{Q}\left(2^{1 / 3}\right)=\mathbf{Q}\left(4^{1 / 3}\right)
$$

Also obtain $\left[\mathbf{Q}\left(\mathbf{2}^{1 / 3}\right): \mathbf{Q}\right]$.
3. (a) Let G be a group of order 51. Suppose that G acts on a set X having 19 elements. What are the possible values of $\left|\mathrm{O}_{x}\right|$ for $x \in \mathrm{X}$? (O_{x} is the orbit of x under this action). Show that there exists an x_{0} in X such that $\mathrm{O}_{x_{0}}=\left\{x_{0}\right\}$. 5
(b) Find the elementary divisors and invariant factors of the group $\mathbf{Z}_{6} \times \mathrm{Z}_{14} \times \mathrm{Z}_{15}$. Also find the highest order an element of this group can have.
4. (a) Find a Sylow 5 -subgroup of S_{5}. How many such subgroups are there ? How many 5cycles are there in S_{5} ? Give reasons for your answer. 6
(b) Check whether or not 978-93-80250-72-5 is a valid ISBN number. - 2
(c) Let:

$$
\begin{equation*}
\mathrm{R}=\frac{\mathrm{Z}_{7}[x]}{\left\langle x^{2}+\mathrm{T}\right\rangle} \tag{2}
\end{equation*}
$$

Check whether or not this is the splitting field of a polynomial over \mathbf{Z}_{7}.
5. (a) Check whether or not Q ($5^{1 / 4}$) is a normal extension of Q. Is it a normal extension or $Q(\sqrt{5})$? Give reasons for your answer. 4
(b) Find the order of the group:

$$
\mathrm{Z}(\mathrm{~A})=\left\{\mathrm{X} \in \mathrm{GL}_{2}\left(\mathrm{Z}_{7}\right) \mid \mathrm{AX}=\mathrm{XA}\right\}
$$

where $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
(c) Check whether or not:

$$
\rho(m)=\left(\begin{array}{cc}
1 & m \\
0 & 1
\end{array}\right)
$$

is a representation or Z . Further, give an example of a 1 -dimensional representation of Z , with justification.
6. (a) Find the stabilizer of:

$$
\left(\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right) \leftarrow M_{2}(R)
$$

under left multiplication action of $\mathrm{GL}_{2}(\mathbf{R})$ on $\mathrm{M}_{2}(\mathrm{R})$.
(b) Let G be the group generated by x, y, z with the only relation $x y x^{-1} y z^{-1}$. Show that G is a free group.
(c) Show that:

$$
f(x)=x^{2}+x+2 \in \mathrm{Z}_{3}[x]
$$

is irreducible. Further, find the order of $f(x)$.

4
(d) Check whether or not [C:R] is an algebraic extension. 2

