Bachelor Preparatory Programme (BPP) Term End Examination, June, 2020 PREPARATORY COURSE IN GENERAL MATHEMATICS

Time: 2 Hours

Maximum Marks: 50

GENERAL INSTRUCTIONS

- 1. All questions are compulsory. Each question carries 1 mark.
- 2. No cell phones, calculators, books, slide-rules, notebooks or written notes, etc. will be allowed inside the examination hall.
- 3. You should follow the instructions given by the Centre Superintendent and by the Invigilator at the examination venue. If you violate the instructions, you will be disqualified.
- 4. Any candidate found copying or receiving or giving assistance in the examination will be disqualified.
- 5. The Question Paper and the OMR Response Sheet (Answer Sheet) would be supplied to you by the Invigilators. After the examination is over, you should hand over the OMR Response Sheet to the Invigilator before leaving the examination hall. Any candidate who does not return the OMR Response Sheet will be disqualified and the University may take further action against him/her.
- 6. All rough work is to be done on the question paper itself and not on any other paper. Scrap paper is not permitted. For arriving at answers you may work in the margins, make some markings or underline in the test booklet itself.
- 7. The University reserves the right to cancel the result of any candidate who impersonates or uses/adopts other malpractices or uses any unfair means. The University may also follow a procedure to verify the validity of scores of all examinees uniformly. If there is substantial indication that your performance is not genuine, the University may cancel your result.

How to fill up the information on the OMR Response Sheet (Examination Answer Sheet)

- 1. Write your complete Enrolment No. in 9 digits. This should correspond to the enrolment number indicated by you on the OMR Response Sheet. Also write your correct name, address with pin code in the space provided. Put your signatures on the OMR Response Sheet with date. Ensure that the Invigilator in your examination hall also puts his signatures with date on the OMR Response Sheet at the space provided.
- 2. On the OMR Response Sheet student's particulars are to be filled in by blue/black ball pen also. Use blue/black ball pen for writing the Enrolment No. and Examination Centre Code as well as for blackening the circle bearing the correct answer number against the serial number of the question.
- 3. Do not make any stray remarks on this sheet.
- 4. Write correct information in numerical digits in Enrolment No. and Examination Centre Code Columns. The corresponding circle should be dark enough and should be filled in completely.
- 5. Each question is followed by four probable answers which are numbered (1), (2), (3) and (4). You should select and show only one answer to each question considered by you as the most appropriate or the correct answer. Select the most appropriate answer. Then by using blue/black ball pen, blacken the circle bearing the correct answer number against the serial number of the question. If you find that answer to any question is none of the four alternatives given under the question, you should darken the circle with '0'.
- 6. No credit will be given if more than one answer is given for one question. Therefore, you should select the most appropriate answer.
- 7. You should not spend too much time on one question. If you find any particular question difficult, leave it and go to the next. If you have time left after answering all the questions, you may go back to the unanswered question.
- 8. There is no negative marking for wrong answers.

 $\langle \mathcal{E} \rangle$

	(3)	Are all crows black?		
	(4)	Dogs are faithful animals.		•
2.	Wh	en a number is added to its cu	be the	result is five times the number. Which one
٠		he following is not a possible va		
	(1)	2	(2)	1
	(3)	0	(4)	-2
3.	In t	he binary number 10111, the p	lace v	alue of the third digit from the right is :
	(1)	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(2)	2
•	(3)	1	(4)	0
4.	Whi	ich one of the following is the p	rime f	actorization of 924 ?
	(1)	$2 \times 3 \times 7 \times 11 \times 11$	(2)	$2 \times 2 \times 3 \times 7 \times 11$
	(3)	$2 \times 6 \times 7 \times 11$	(4)	$2 \times 3 \times 7 \times 7 \times 11$
5.	(10 -	$+2-3) \times (2 \times 4 + 12 + 4) =$		
.*	(1)	43	(2)	10
	(3)	22	(4)	-80
3. .	$\frac{2^4}{6^8} =$			
- 1	(1)	$\frac{2}{6}$	(2)	$\frac{2}{3}$
. ((3)	$\frac{4}{6}$	(4)	$\frac{2}{27}$

(3)

P. T. O.

Which one of the following is not an ambiguous statement?

The number of ways to draw a card from a deck of 52 playing cards is infinite.

(1) Delhi is the most polluted city of India.

1.

(2)

- 7. The largest of the fractions $\frac{3}{8}$, $\frac{5}{10}$, $\frac{2}{7}$ and $\frac{4}{9}$ is:
 - (1) $\frac{3}{8}$

(2) $\frac{5}{10}$

(3) $\frac{2}{7}$

- (4) $\frac{4}{9}$
- 8. A rectangular piece of cloth whose edges have lengths $2\frac{1}{3}$ m and $5\frac{1}{2}$ m requires a strip of cloth stitched along its edges. The length (in metres) of the strip is:
 - (1) $7\frac{5}{6}$

(2) $15\frac{2}{3}$

(3) $10\frac{1}{6}$

- (4) $10\frac{2}{5}$
- 9. How many one-thirds are there in $4\frac{1}{3}$?
 - (1) 4

(2) 5

(3) 13

(4) $\frac{13}{3}$

- 10. 1.005 + 1.59 + 0.3 =
 - (1) 2.895

(2) 1.157

(3) 2.67

(4) 3.39

11.	If 10 people can finish a job in 12 days, then the number of days required by							
	6 pe	cople to finish the job is:						
	(1)	5	(2)	20			,	
	(3)	60	(4)	72				

12. 6 students of a class of 56 students were absent on a day. The percentage of students present in the class is:

 (1)
 89.29

 (3)
 10.71

 (4)
 112

13. A statement which is found to be true in many cases, but has not been proved, is called:

(1) a counter-example (2) an axiom

(3) a theorem (4) a conjecture

14. Which of the following expressions is a polynomial?

(1) $x^2 + x^{-2} + 1$ (2) $x^3 + x^{2/3} + x + 1$

(3) $\frac{x+1}{x-1}+1$ (4) $2x^{10}+1$

15. The value of the expression $\frac{2x^2-7y+2}{(x-y)^2+z^2}$ at x=1, y=2, z=3 is :

(1) -1 (2) 1

(3) $-\frac{3}{2}$ (4) $-\frac{5}{4}$

- 16. Which of the following is a solution of the equation $\frac{x}{2} + \frac{y}{3} = \frac{1}{4}$?
 - $(1) \quad \left(\frac{3}{4},0\right)$

 $(2) \quad \left(0, -\frac{3}{4}\right)$

(3) $\left(0,\frac{3}{4}\right)$

- $(4) \quad \left(\frac{1}{2},\frac{1}{3}\right)$
- 17. The sum of the terms in the sequence 3, 3×7 , 3×7^2, 3×7^{10} is :
 - $(1) \quad \frac{3(7^{10}-1)}{6}$
- $(2) \quad \frac{3.7^{10}-1}{6}$
- $(3) \quad \frac{3(7^{11}-1)}{6}$

- (4) $\frac{3(7^{11}-1)}{2}$
- 18. The sum of the series $(-8) + (-6) + (-4) + \dots + 10$ is:
 - (1) 10

(2) 8

(3) 2

- (4)
- 19. If a and b are non-zero constants, then which of the following is a geometric progression?
 - (1) $a, a + b, a + b^2, a + b^3, \dots$
- (2) $a, a+b, a+2b, a+3b, \dots$
 - (3) $ab^2, ab^2, ab^2, ab^2, \dots$
- (4) ab, 2ab, 3ab,
- 20. $n! + (n-1)! = \dots$, where $n \in \mathbb{N}$:
 - (1) (n+1)!(n-1)

(2) (n+1)(n-1)!

(3) (n+1)!

(4) (2n-1)!

21.	The number of ways to arrange 10 chairs in a row with 12 positions is:							
	(1)	12!			•	(2)	10!	•
	(3)	120				(4)	$\frac{12!}{2}$	

Mani forgot the password of his e-mail account. He only remembers that it was made of 6 English alphabets, of which the first and the last characters were the same. What are the maximum number of possibilities for the password?

(1)
$$26^5$$
 (2) $26 \times 25 \times 24 \times 23 \times 22 \times 26$ (3) 26^6 (4) 26×6

 $1 + C(10, 1) \cdot 2 + C(10, 2) \cdot 2^{2} + \dots + C(10, 10) \cdot 2^{10} =$ 23. 2^{10} **(1)** 310 (2)

 $2^{11} - 1$ (3)**(4)** $1 - 2^{11}$

Which of the following is a simplified form of $(3\sqrt{5} + 1)(7 - 2\sqrt{5})$? 24.

 $19\sqrt{5} - 23$ (2) $-48\sqrt{5}$ (1)

 $19\sqrt{5} - 72$ (4) $20\sqrt{5}$ (3)

Which of the following is a factor of $2x^3 + 3x^2 - 2a^2x - 3a^2$?

 $(1) \quad x^2 + a^2$ 2a + 3**(2)**

 $(3) \quad x^2 - a^2$ **(4)** 3x + 2

B and C be three points in a	plane. Let P be a poin	nt lying between A and B,	
pe a point lying between B	and C. Then which of	the following need not be	
P + PB = AB	(2) $PB + BQ = PQ$		
Q + QC = BC	$(4) \angle APB = \angle BQ$	C	٠
of the following has only one	line of reflection symp	netry?	
te	(2) rhombus		
ctangle	(4) parallelogram	·	
c and p , q , r are the sides of bllowing must be true?	two triangles, such the	at $\frac{a}{p} = \frac{b}{q} = \frac{c}{r}$, then which	
e triangles are right-angled	triangles.	•	
ne triangles have equal perin	neters.		
ne triangles are congruent.			
ne triangles are similar.			
tion of a cone by a plane par	allel to the axis of the	cone is:	
circle	(2) a hyperbola	en de la companya de La companya de la co	
ellipse	(4) a parabola		
of the following polygons doe	es not create a regular	· · · · · · · · · · · · · · · · · · ·	
uilateral triangle	(2) square		
gular pentagon	(4) regular hexago	n .	
	(8)	(9)-	
gu	lar pentagon		

91.	AA 11	ich of the following state	ments is true :	
	(1)	The area of a flat sha	pe is \emph{lb} square units, where \emph{l} and	b denote length and
		breadth, respectively.		
	(2)	The circles with the sa	me centre are congruent.	•
	(3)	The letter N has a rot	tional symmetry.	
·	(4)	A hyberboloid is a mad	le of two paraboloids.	
32.	Rita	a makes an open cylind	rical container of radius r units an	${f d}$ length ${m l}$ units. She
•	wis	hes to paint the surface	of the container. The area to be pa	ainted will be
	squ	are units.		
	(1)	$2\pi rl + \pi r^2$	$(2) 2\pi rl + 2\pi r^2$	
	(3)	$2\pi r^2$	(2) $2\pi rl + 2\pi r^2$ (4) $\pi r^2 l$	
33.	The	e ratio of the radii of tw	o spheres is 1 : 4. Therefore, the r	atio of their volumes
	will	be:		
•	(1)	16:1	(2) 1:5	
	(3)	1:16	(4) 1:64	
34.	The	e line passing through th	e origin and (2, 3) has the slope:	
	(1)	$\frac{2}{3}$	(2) $\frac{3}{2}$	
	(3)	2	(4) 3	
35.	The	degree of $(x^2+1)(x-1)$) is:	
	(1)	0	(2) 2	
	(3)	3	(4) 4	
OMT	-101		(9)	P. T. O.

36.	The	number of rational numbers bet	ween	$\frac{1}{3}$ and $\frac{2}{3}$ is:
	(1)	0	(2)	1
	(3)	2	(4)	Infinite
37.	If P	(A) = $\frac{1}{3}$, P(B) = $\frac{2}{3}$, then which	of th	e following is true?
·	(1)	$P(A \cup B) < \frac{2}{3}$	(2)	$P(A \cap B) = 1$
	(3)	$P(A \cup B) + P(A \cap B) = 1$	(4)	$P(A \cup B) = P(A \cap B)$
38.	The	distance between the points (1,	–1) aı	nd (3, -2) is:
	(1)	$\sqrt{5}$	(2)	√6
	(3)	3	(4)	1
39.	The	angle between the hands of a cl	ock sh	nowing 4 p.m. is:
٠	(1)	50°	(2)	60°
	(3)	100°	(4)	120°
40.	Amo	ong 1.096, 1.69, 1.609 and 1.96, t	he la	rgest number is :
	(1)	1.096	(2) ·	1.69
			• •	
	(3)	1.609	(4)	1.96
41.		1.609 median of the data 10, 12, 5, 9,	(4)	1.96
41.			(4)	1.96
41.	The	median of the data 10, 12, 5, 9,	(4) 2, 6, 3	1.96 3, 1, 6 is :

42.	The	mode o	f the data 1,	2, 2, 3, 2, 3,	4, 2,	6, 3 is :			
	(1)	2			(2)	3			
	(3)	4			(4)	6			
43.	₹A	is inve	sted at r% o	compound ir	nteres	st, compounded	l annually, f	or <i>n</i> year	s. The
	amo	ount (in	₹) at the end	l of n years in	is:	Marine Constant		e e e e e e e e e e e e e e e e e e e	
	(1)	A + (1	$+\frac{r}{100}\bigg)^n$		(2)	$A\left(1+\frac{r}{100}\right)^n$	en general de la companya de la comp		
	(3)	A(1 +	$\left(\frac{nr}{100}\right)$		(4)	$\frac{\mathbf{A} \times \mathbf{r} \times \mathbf{n}}{100}$	yna ky t £ i dal		
44.	If a	die is				umber of elen			space
	is:				in;			- 	
	(1)	3^6			(2)	6 × 3	•		
	(3)	6 + 3	5.4 .€	ng Papawal	(4)	63 10 10 10 11 11 11 11 11 11 11 11 11 11	The second second		e de la companya de l
45.	The	mean d	uration of th	e data 6, 5,	5, -1	, 6, 3, 4, 9, 8 is			
	(1)	2			(2)	3	`	7	
	(3)	$\frac{\sqrt{68}}{9}$	ं रहे. द	iman reign. 1931		,36 1 bas 800 18	1.453 (25) 1 (1.48)		
46.	If th	ie proba	bilities of ty	wo independ	lent (events A and I	B are p and	q, respec	tively,
	then	P(A ^C	ر'B ^C) =	Sat≷i _a t Al	~ <u>\$</u>	.e 8 .s t .64 nes	i Delik i sasi	tan j	\$18.
	(1)	pq		ल र ं	(2)	pq - 1			
	(3)	1 - pq		&.\$.	(4)	(1-p)(1-q)		6	
OMT-	101			· §	(11)			P	ATOO.

47. The mean of the following data is:

Data	Frequency
10—20	2
20—30	6
30—40	8
4050	. 10

(1) 30

(2) 35

(3) 40

- (4) 45
- 48. The figure below gives the blood types of 10000 people:

The number of those people with blood group O+ is:

(1) 37

(2) 3700

(3) 0.37

- (4) 37000
- 49. A shopkeeper offers 8% discount on the sale of an item. If the marked price of the item is ₹ 450/-, then its selling price, in rupees, is:
 - (1) 450

(2) 436

(3) 414

- (4) 36
- 50. In a class of 100 students, 30 passed in History, 60 passed in English and 38 passed in both the subjects. How many students failed in both the subjects?
 - **(1)** 2

(2) 10

(3) 48

(4) 62

(12)

स्नातक प्रारंभिक कार्यक्रम (बी. पी. पी.)

सत्रांत परीक्षा, जून, 2020

सामान्य गणित में प्रारंभिक पाठ्क्रम

समय: 2 घण्टे

अधिकतम अंक : 50

सामान्य निर्देश

- 1. सभी प्रश्न अनिवार्य हैं। प्रत्येक प्रश्न 1 अंक का है।
- 2. परीक्षा कक्ष के अंदर सेलफोन, कैलकुलेटर्स, पुस्तकें, स्लाइड-रूल्स, नोटबुक्स या लिखित नोट्स, इत्यादि ले जाने की अनुमति नहीं है।
- 3. आपको परीक्षा स्थल पर केंद्र व्यवस्थापक व निरीक्षक के द्वारा दिए गये निर्देशों का अनुपालन करना होगा। ऐसा न करने पर आपको अयोग्य घोषित किया जाएगा।
- 4. कोई परीक्षार्थी नकल करते या कराते हुए पकड़ा जाता है तो उसे अयोग्य घोषित कर दिया जाएगा।
- 5. आपको निरीक्षक द्वारा प्रश्नपत्र तथा ओ. एम. आर. उत्तर पत्रक प्रदान किया जाएगा। परीक्षा समाप्त हो जाने के पश्चात्, परीक्षा कक्ष छोड़ने से पहले ओ. एम. आर. उत्तर पत्रक को निरीक्षक को सौंप दें। किसी परीक्षार्थी द्वारा ऐसा न करने पर उसे अयोग्य घोषित कर दिया जाएगा तथा विश्वविद्यालय उसके खिलाफ आगे कार्यवाही कर सकता है।
- 6. सभी रफ कार्य प्रश्नपत्र पर ही करना है, किसी अन्य कागज पर नहीं। स्क्रैप पेपर की अनुमित नहीं है। उत्तर देते समय आप उत्तर-पुस्तिका में ही हाशिये का प्रयोग कर सकते हैं, कुछ निशान लगा सकते हैं या रेखांकित कर सकते हैं।
- 7. विश्वविद्यालय को यह अधिकार है कि किसी परीक्षार्थी द्वारा अनुचित व्यवहार या अनुचित साधनों का प्रयोग करने पर उसके परिणाम को रद्द कर दे। विश्वविद्यालय को भी चाहिए कि वह सभी परीक्षार्थियों के अंकों की जाँच एकसमान रूप से करे। यदि कहीं से ऐसा दिखाई देता है कि आपका निष्पादन उचित नहीं है, तो विश्वविद्यालय आपके परिणाम रद्द कर सकता है।

ओ. एम. आर. उत्तर-पत्रक (परीक्षा उत्तर पत्रक) पर सूचना कैसे भरें

- 1. 9 अंकों में अपना पूर्ण अनुक्रमांक लिखें। यह अनुक्रमांक ओ. एम. आर. उत्तर पत्रक पर आपके द्वारा डाले गए अनुक्रमांक से मिलना चाहिए। दिए गए स्थान में अपना सही नाम, पता भी पिन कोड सहित लिखिए। ओ. एम. आर. उत्तर पत्रक पर तिथि सहित अपने हस्ताक्षर कीजिए। यह सुनिश्चित कर लें कि आपके परीक्षा कक्ष में निरीक्षक ने भी दी गई जगह पर तिथि सहित ओ. एम. आर. उत्तर पत्रक पर हस्ताक्षर कर दिए हैं।
- 2. ओ. एम. आर. उत्तर पत्रक पर परीक्षार्थी का विवरण नीले/काले बाल पेन द्वारा भरा जाना चाहिए। अनुक्रमांक व परीक्षा केंद्र कूट लिखने व साथ ही प्रश्न के क्रमांक के सामने सही उत्तर-संख्या वाले गोले को काला करने के लिए भी नीले/काले बाल पेन का प्रयोग करें।
- 3. इस पत्रक पर कोई अवांछित निशान न लगायें।
- 4. अनुक्रमांक तथा परीक्षा केंद्र कूट स्तंभ में सही सूचना अंकों में लिखें। संगत गोले को पूर्णतः गहरा करें तथा पूर्ण रूप से भरें।
- 5. प्रत्येक प्रश्न के चार संभावित उत्तर हैं जिन्हें (1), (2), (3) व (4) द्वारा दर्शाया गया है। आपको इनमें से सर्वाधिक उचित उत्तर को चुनकर नीले / काले बाल पेन से प्रश्न के क्रमांक के सामने सही उत्तर वाले गोले को काला करें। यदि आपको लगे कि प्रश्न के नीचे दिए हुए चार विकल्पों में से कोई सही नहीं है, आप गोले को '0' सहित काला करें।
- 6. एक से अधिक उत्तर होने पर कोई अंक नहीं मिलेगा। इसलिए सर्वाधिक उचितं उत्तर को ही चुनें।
- 7. एक प्रश्न पर अधिक समय मत खर्च कीजिए। यदि आपको कोई प्रश्न कठिन लग रहा हो, तो उसे छोड़कर अगले प्रश्न को हल करने का प्रयास कीजिए। बाद में समय बचने पर उस छोड़े हुए प्रश्न का उत्तर दे सकते हैं।
- 8. गलत उत्तरों हेतु कोई ऋणात्मक अंकन नहीं होगा।

1.	निम्नलिखित में से कौन-सा एक संदिग्ध	कथन नहीं है ?	
	(1) दिल्ली भारत का सबसे अधिक प्रव	दूषित शहर है।	
	(2) 52 ताश के पत्तों की एक गड्डी	में से एक पत्ता निकालने के अनंत तरीके हैं।	
	(3) क्या सभी कौवे काले हैं ?		•
	(4) कुत्ते वफादार जानवर हैं।		
2.	जब एक संख्या को उसके घन में जोड़	दिया जाता है, तो परिणाम उस संख्या का 5 गुना	होता है।
	निम्नलिखित में से कौन-सा उस संख्या व	का संभावित मान नहीं है ?	
	(1) 2	(2) 1	
	(3) 0	(4) -2	
3.	द्विआधारी संख्या 10111 में दायें से तीस	री संख्या का स्थान-मान है :	
•	(1) 4	(2) 2	
	(3) 1	(4) 0	
4.	निम्नलिखित में से कौन-सा संख्या 924	का अभाज्य गुणनखण्डन है ?	
•	$(1) 2\times3\times7\times11\times11$	$(2) 2 \times 2 \times 3 \times 7 \times 11$	
	$(3) 2\times 6\times 7\times 11$	$(4) 2\times3\times7\times7\times11$	
5.	$(10 \div 2 - 3) \times (2 \times 4 + 12 \div 4) =$		
	(1) 43	(2) 10	
	(3) 22	(4) -80	
OMT	r-101	(15)	P. T. O.

6. $\frac{2^4}{6^3} =$

(1) $\frac{2}{6}$

(2) $\frac{2}{3}$

 $(3) \frac{4}{6}$

(4) $\frac{2}{27}$

7. भिन्नों $\frac{3}{8}, \frac{5}{10}, \frac{2}{7}$ और $\frac{4}{9}$ में से अधिकतम है :

(1) $\frac{3}{8}$

(2) $\frac{5}{10}$

(3) $\frac{2}{7}$

(4) $\frac{4}{9}$

8. कपड़े के एक आयताकार दुकड़े, जिसके किनारों की लम्बाइयाँ $2\frac{1}{3}$ मी. और $5\frac{1}{2}$ मी. हैं, के किनारों पर कपड़े की एक पट्टी लगाई जानी है। पट्टी की लम्बाई (मी. में) है :

(1) $7\frac{5}{6}$

(2) $15\frac{2}{3}$

(3) $10\frac{1}{6}$

(4) $10\frac{2}{5}$

9. $4\frac{1}{3}$ में कितने एक-तिहाई हैं ?

(1) 4

(2) 5

(3) 13

(4) $\frac{13}{3}$

10. 1.005 + 1.59 + 0.3 =

(1) 2.895

(2) 1.157

(3) 2.67

(4) 3.39

OMT-101

		· ·						
11.	यदि 10 आ	दमी एक कार्य व	को 12 दिन में	पूरा करते	हैं, तो	उस कार्य	को पूरा व	क रः -
	6 आदमियों ह	द्वारा लगाए गए दिः	नों की संख्या है	:		•		
	(1) 5		(2)	20				
•	(3) 60		(4)	72	•			
12.	56 छात्रों की	एक कक्षा में एक	दिन 6 छात्र अ	नुपस्थित थे	। कक्षा में	- उपस्थित ह	अत्रों की संख	थ्रा े
	(1) 89.29		(2)	50	* .	2.34 2.34		

(3) 10.71 (4) 112 एक कथन जो अत्यधिक स्थितियों में सत्य पाया गया है लेकिन उसकी कोई उपपत्ति नहीं है

(2) 50

- कहते हैं: (1) एक प्रति-उदाहरण
 - (2) एक अभिगृहीत (3) एक प्रमेय (4) एक अनुमान
- 14. निम्नलिखित में से कौन-सा व्यंजक एक बहुपद है ?
 - $(2) x^3 + x^{2/3} + x + 1$ (1) $x^2 + x^{-2} + 1$ (3) $\frac{x+1}{x-1}+1$ $(4) 2x^{10} + 1$
- 15. व्यंजक $\frac{2x^2-7y+2}{(x-y)^2+z^2}$ का मान x=1, y=2, z=3 पर है :
 - (1) -1(2) 1 $(3) -\frac{3}{2}$ $(4) -\frac{5}{4}$
- 16. निम्नलिखित में से कौन-सा समीकरण $\frac{x}{2} + \frac{y}{3} = \frac{1}{4}$ का हल है ?
 - $(1) \left(\frac{3}{4},0\right)$ $(2) \left(0,-\frac{3}{4}\right)$ $(3) \left(0,\frac{3}{4}\right)$ $(4) \left(\frac{1}{2},\frac{1}{3}\right)$

17.	अनुक्रम $3, 3 \times 7, 3 \times 7^2, \dots, 3 \times 7^{10}$	के पदों का योगफल है:
	(1) $\frac{3(7^{10}-1)}{6}$	$(2) \ \frac{3.7^{10}-1}{6}$
	$(3) \ \frac{3(7^{11}-1)}{6}$	$(4) \ \frac{3(7^{11}-1)}{2}$
18.	श्रेणी (-8) + (-6) + (-4) + + 10 व	ज योगफल है :
	(1) 10	(2) 8
	(3) 2	(4) 1
19.	यदि a और b दो शून्येतर अचर हैं, तो ि	नेम्नलिखित में से कौनसी गुणोत्तर श्रेणी है ?
	(1) $a, a+b, a+b^2, a+b^3,$	(2) $a, a+b, a+2b, a+3b, \dots$
	(3) $ab^2, ab^2, ab^2, ab^2, \dots$	(4) ab, 2ab, 3ab,
20.	$n! + (n-1)! = \dots$, जहाँ $n \in \mathbb{N}$ है	:
	(1) $(n+1)(n-1)$	(2) $(n+1)(n-1)!$
	(3) (n+1)!	(4) $(2n-1)!$
21.	10 कुर्सियों को एक कतार में 12 स्थान	ों पर व्यवस्थित करने के तरीके हैं :
	(1) 12!	(2) 10!
	(3) 120	(4) $\frac{12!}{2}$
22.	मनी अपने ई-मेल खाते का पासवर्ड १	नूल गया। उसको सिर्फ इतना याद है कि यह अंग्रेजी कं
	6 अक्षरों से मिलकर बना था, जिसमें	पहला और आखिरी अक्षर समान थे। पासवर्ड के लिए
	अधिकतम कितनी संभावनाएँ हैं ?	
	(1) 26^5	(2) $26 \times 25 \times 24 \times 23 \times 22 \times 26$
	$(3) 26^6$	(4) 26×6
OMT	-101	(18)

23.	$1 + C(10, 1) \cdot 2 + C(10, 2) \cdot 2^{2} + \dots$	$+ C(10, 10) 2^{10} =$.
	(1) 2^{10}	(2) 3 ¹⁰	
	$(3) 2^{11}-1$	$(4) 1-2^{11}$	•
24.	निम्नलिखित में से कौन-सा (3√5 + 1)	$(7-2\sqrt{5})$ का सरलीकृत रूप है	?
٠.	(1) $19\sqrt{5} - 23$	(2) $-48\sqrt{5}$	
	(3) $19\sqrt{5} - 72$	(4) 20√5	
25.	निम्नलिखित में से कौन-सा $2x^3+3x$	$a^2-2a^2x-3a^2$ का गुणनखण्ड है	?
	$(1) x^2 + a^2$	(2) $2a + 3$	
	(3) $x^2 - a^2$	(4) $3x + 2$	
26.	मान लीजिए कि A, B और C एक सम	ातल में तीन बिन्दु हैं। मान लीजिए	, P, A और B के बीच मे
	स्थित कोई बिन्दु है और Q, B और	C के बीच में स्थित कोई बिन्दु है	। तब निम्नलिखित में से
	कौनसा आवश्यक नहीं है कि सत्य हो	?	
	(1) AP + PB = AB	(2) PB + BQ = PQ	
	(3) BQ + QC = BC	$(4) \angle APB = \angle BQC$	
27.	निम्नलिखित में से किसमें परावर्तन सम	मिति का केवल एक अक्ष है ?	•
	(1) पतंग	(2) समचतुर्भुज	
	(3) आयत	(4) समांतर चर्तुभुज	
28.	यदि a, b, c और p, q, r किन्हीं द	ो त्रिभुजों की भुजाएँ इस प्रकार	हैं कि $\frac{a}{p} = \frac{b}{a} = \frac{c}{r}$, तो
	निम्नलिखित में से कौन-सा सत्य होगा		p y r
	(1) त्रिभुज समकोण त्रिभुज हैं।	(2) त्रिभुजों के परिमाप समा	न हैं।
	(3) त्रिभुज सर्वांगसम हैं।	(4) त्रिभुज समरूप हैं।	
OMT.	-1	(19)	P. T. O.

			•			
. <u>1</u> 16	किसी शंकु के अक्ष के स	मांतर समतल से उस शंकु का परिच्छेद	है:			
	(1) एक वृत्त	(2) एक अतिपरवलग	4			
	(3) एक दीर्घवृत्त	(4) एक परवलय				
30	निम्नलिखित में से कौन-से बहुभुज सम टाइलिंग पैटर्न नहीं बनाते ?					
	(1) समबाहु त्रिभुज	(2) वर्ग				
	(3) समपंचभुज	(4) समषट्भुज				
3:	निम्नलिखित में से कौन-सा	ा कथन सत्य है ?	•			
	(1) एक सपाट आकृति का क्षेत्रफल lb वर्ग इकाई होता है, जहाँ l और b क्रमश: इसकी लम्बाई					
	और चौड़ाई है।					
	(2) एक ही केन्द्र वाले व	दो वृत्त सर्वांगसम होते हैं।				
	(3) अक्षर N में घूर्णन स	तममिति है।				
	(4) एक अतिपरवलयज दो परवलयजों से मिलकर बनी होती है।					
32.	रीता r इकाई त्रिज्या वाला और l इकाई लम्बाई वाला एक बेलनाकार खुला डिब्बा बनाती है। वह					
	डिब्बे की सतह पर पेंट क	जरना चाहती है। पेंट किया जाने वाला क्ष	नेत्रफल """" वर्ग इकाई है।	•		
	(1) $2\pi rl + \pi r^2$	(2) $2\pi rl + 2\pi r^2$	• · · · · · · · · · · · · · · · · · · ·			
	(3) $2\pi r^2$	$(4) \pi r^2 l$				
33,	दो गोलों की त्रिज्याओं का अनुपात 1:4 है। अत: इनके आयतनों का अनुपात होगा :					
	(1) 16:1	(2) 1:5				
	(3) 1:16	(4) 1:64				
34.	मूलबिन्दु और (2, 3) से गु	जरने वाली रेखा की प्रवणता है :	Section of the Sectio	•		
	(1) $\frac{2}{3}$	$(2) \frac{3}{2}$				
	(3) 2	(4) 3	•			
OMT	T-101	(20)	. ₩O			

- 33.	(x +1)(x-1) 4/1 4/1 6;			
	(1) 0	(2) 2		
	(3) 3	(4) 4		
36.	$\frac{1}{3}$ और $\frac{2}{3}$ के बीच में परिमेय संख्याओं की संख्या है :			
	(1) 0	(2) 1		
	(3) 2	(4) अनंत		
37.	यदि $P(A) = \frac{1}{3}$ और $P(B) = \frac{2}{3}$ है,	तो निम्नलिखित में से कौन-सा सत्य है ?		
	(1) $P(A \cup B) < \frac{2}{3}$	(2) $P(A \cap B) = 1$		
	(3) $P(A \cup B) + P(A \cap B) = 1$	(4) $P(A \cup B) = P(A \cap B)$		
38.	बिन्दुओं (1,-1) और (3,-2) के बीच व	की दूरी है:		
	(1) √5	$(2) \sqrt{6}$		
	(3) · 3	(4) 1		
39.	किसी घड़ी में शाम 4 बजे के समय इस	की सुइयों के बीच का कोण है :		
	(1) 50°	(2) 60°		
•	(3) 100°	(4) 120°		
40.	संख्याओं 1.096, 1.69, 1.609 और 1.96 में महत्तम है :			
	(1) 1.096	(2) 1.69		
	(3) 1.609	(4) 1.96		
OMT	:-1	(21)		

P. T. O.

41.	आँकड़ों 10, 12, 5, 9, 2, 6, 3, 1, 6 की	माध्यिका है :
	(1) 9	(2) 6
	(3) 2	(4) 6.5
42.	आँकड़ों 1, 2, 2, 3, 2, 3, 4, 2, 6, 3 का	बहुलक है :
	(1) 2	(2) 3
	(3) 4	(4) 6
43.	₹ A को चक्रवृद्धि ब्याज, जिसकी वाष्टि	कि गणना की जाती है, की $r\%$ दर पर n वर्ष के लिए
	निवेश किया गया है। n वर्षों के बाद ध	नराशि (₹ में) होगी :
	$(1) \mathbf{A} + \left(1 + \frac{r}{100}\right)^n$	$(2) A\left(1+\frac{r}{100}\right)^n$
	$(3) A\left(1+\frac{nr}{100}\right)$	$(4) \frac{\mathbf{A} \times \mathbf{r} \times \mathbf{n}}{100}$
44.	यदि एक पाँसे को 3 बार फेंका जाता है	, तो प्रतिदर्श-समष्टि के अवयवों की संख्या है :
	$(1) 3^6$	(2) 6×3
	(3) 6+3	$(4) 6^3$
45.	ऑकड़ों 6, 5, 5, -1, 6, 3, 4, 9, 8 का म	ाध्य विचलन है :
	(1) 2	(2) 3
	(3) $\frac{\sqrt{68}}{9}$	(4) 8
46.	यदि दो स्वतंत्र घटनाओं A और B	के होने की प्रायिकताएँ क्रमशः p और q हैं, तो
	$P(A^C \cup B^C) =$	
	(1) pq	(2) $pq-1$

(3) 1-pq

(4) (1-p)(1-q)

47. निम्नलिखित आँकड़ों का माध्य है:

वर्ग	बारम्बारताएँ
10—20	2
20—30	6
30—40	100 may 2 1/2 8 m 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
40—50	10

(1) 30

(2) 35

(3) 40

(4) 45

48. नीचे दिया गया चित्र 10000 लोगों के रक्त समूह दर्शाता है:

इनमें से रक्त समूह O* वाले लोगों की संख्या है:

(1) 37

(2) 3700

(3) 0.37

(4) 37000

49. एक दुकानदार एक वस्तु की बिक्री पर 8% की छूट देता है। यदि वस्तु का अंकित मूल्य ₹ 450/-है, तो इसका बिक्री मूल्य (₹ में) है :

(1) 450

(2) 436

(3) 414

(4) 36

50? 100 छात्रों की एक कक्षा में, 30 इतिहास में पास हुए, 60 अंग्रेजी में और 38 दोनों विषयों में पास हुए। कितने छात्र दोनों विषयों में फेल हुए ?

(1) 2

(2) 10

(3) 48

(4) 62