ACHELOR'S DEGREE PROGRAMME

(BDP)

Term-End Examination
June, 2020
TE-06 : ELECTIVE COURSE : MATHEMATICS : ABSTRACT ALGEBRA
ne: 2 Hours
Maximum Marks : 50
te : (i) Question No. 5 is compulsory.
(ii) Answer any four questions from the rest of the questions.
(iii) Use of calculator is not allowed.
(a) Check whether or not Z is a group with respect to the operation *, defined by :

$$
a^{*} b=a+b+1
$$

(b) Show that there is no non-zero ring homomorphism :

$$
f: \mathbf{Z}_{8} \rightarrow \mathbf{Z}_{7}
$$

(c) Find a maximal ideal of $\mathbf{R}[x]$ containing the ideal $\left\langle x^{2}-1, x^{3}-1\right\rangle$. 4
P. T. O.
2. (a) Let:

$$
S=\left\{\left.\frac{p}{q} \in Q \right\rvert\,(q, 7)=1\right\}
$$

Define a relation \sim on S by $\frac{p}{q} \sim \frac{a}{b}$
$7 \mid(b p-a q)^{\prime}$. Check whether or not \sim is equivalence relation on S.
(b) Let:

$$
J=\{p(x) \in Q[x] \mid p(0)=0=p(1)\} .
$$

Show that J is an ideal of $\mathbf{Q}[x]$. Also, fir monic polynomial that generates ideal J.
(c) Give two distinct elements of the group

$$
\frac{\mathbf{C}[x]}{\left\langle x^{3}+x\right\rangle}
$$

with justification.
3. (a) Show that every element of $\frac{\mathbf{Q}}{\mathbf{Z}}$ is of fil order. Further, if \mathbf{G} is any group and \mathbf{H} proper normal subgroup of G, must ev
element of $\frac{\mathrm{G}}{\mathrm{H}}$ have finite order ? Give reasons for your answer. 5
(b) Let:

$$
f: \mathrm{G} \rightarrow \mathrm{H}
$$

be a non-trivial group homomorphism, where G has no non-trivial proper normal subgroup. Show that f is one-one. Deduce that there is no non-trivial group homomorphism from \mathbf{Z}_{p} to \mathbf{S}_{4}. 5
4. (a) Give an example, with justification, of a ring R with elements r and s such that $r s=0$ but $s r \neq 0$.
(b) Show that in a ring, the sum of two nilpotent elements need not be nilpotent. 2
(c) Check whether or not $\mathrm{F}=\frac{\mathrm{Q}[x]}{\left\langle 2-6 x+x^{3}\right\rangle}$ is
a field. If F is a field, find $\overline{(1-x)}^{-1}$. If F is not a field, find the quotient field of F . 6
5. Which of the following statements are true, and which are not? Give reasons for your answers in the form of a short proof or a counterexample :
(i) There is no non-abelian group of order 9.
(ii) There is an injective ring homomorphism from $\mathbf{M}_{2}(\mathbf{Z})$ to $\mathbf{M}_{3}(\mathbf{Z})$.
(iii) In a ring, every prime ideal is a maximal ideal.
(iv) The maximum order an element of S_{7} can have is 7 .
(v) $\left\{\mathbf{Z}, \mathrm{IGNOU}, \mathbf{M}_{n}(\mathbf{R})\right\}$ is a set.
6. (a) Apply the principle of induction to show that:

$$
\left(4^{n+1}+5^{2 n-1}\right)
$$

is divisible by $21 \forall n \in \mathbf{N}$.
(b) Consider $G=\{\overline{1}, \overline{5}, \overline{7}, \overline{11}\}$, a group under multiplication modulo 12. Apply Cayley's theorem to find a permutation group isomorphic to G.
7. (a) Show that 10 has two distinct factorisations into irreducibles in $\mathrm{Z}[\sqrt{-6}]$. Hence, decide whether or not $\mathbf{Z}[\sqrt{-6}]$ is a Euclidean domain. 5
(b) Give an example, with justification of a group G whose centre is not G . 2
(c) Give two distinct left cosets of V_{4} in S_{4}. Justify your answer. 3

$$
\left[\mathrm{V}_{4}=\{e,(12)(34),(13)(24),(14)(23)\}\right]
$$

सत्रांत परीक्षा

जून, 2020
एम.टी.ई.-06 : ऐच्छिक पाठ्यक्रम : गणित :
अमूर्त बीजगणित

समय : 2 घण्टे
अधिकतम अंक : 50

नोट : (i) प्रश्न संख्या 5 अनिवार्य है।
(ii) बाकी के प्रश्नों में से किन्हीं चार प्रश्नों के उत्तर दीजिए।
(iii) कैलकुलेटर के प्रयोग की अनुमति नहीं है।

1. (क) जाँच कीजिए कि संक्रिया * के सापेक्ष Z एक

समूह है या नहीं, जहाँ * $a * b=a+b+1$ से
परिभाषित है।
(ख) दर्शाइए कि कोई शून्येतर वलय समाकारिता

$$
\begin{equation*}
f: \mathrm{Z}_{5} \rightarrow \mathrm{Z}_{7} \text { नहीं होती। } \tag{3}
\end{equation*}
$$

(ग) $\mathbf{R}[x]$ की एक ऐसी उच्चिष्ठ गुणजावली ज्ञात

कीजिये जिसमें गुणजावली $\left\langle x^{2}-1, x^{3}-1\right\rangle$ हो।
2. (क) मान लीजिए कि : 3

$$
\mathrm{S}=\left\{\left.\frac{p}{q} \in \mathbf{Q} \right\rvert\,(q, 7)=1\right\}
$$

है। $\frac{p}{q} \sim \frac{a}{b}$ यदि और केवल यदि
$7 \mid(b p-a q)^{\prime}$ द्वारा S पर एक संबंध ~ परिभाषित कीजिए। जाँच कीजिए कि S पर ~

एक तुल्यता संबंध है या नहीं।
P.T.O.
(ख) मान लीजिए कि :

$$
\mathrm{J}=\{p(x) \in \mathbf{Q}[x] \mid p(0)=0=p(1)\} .
$$

दर्शाइए कि J, $\mathbf{Q}[x]$ की एक गुणजावली है।

साथ ही, एक ऐसा एकगुणांकी बहुपद भी ज्ञात
कीजिए जो गुणजावली J को जनित करता है।
(ग) पुष्टि करते हुए, समूह :

$$
\frac{\mathrm{C}[x]}{\left\langle x^{3}+x\right\rangle}
$$

के दो अलग-अलग अवयव दीजिए।
3. (क) दर्शाइए कि Q / Z का प्रत्येक अवयव परिमित कोटि का है। साथ ही, यदि G कोई समूह है

तथा G का H एक उचित प्रसामान्य उपसमूह है,

तो क्या G / H का प्रत्येक अवयव परिमित कोटि

का होना चाहिए ? अपने उत्तर के लिए कारण
(ख) मान लीजिए कि :

$$
f: \mathrm{G} \rightarrow \mathrm{H}
$$

एक अतुच्छ समूह समाकारिता है, जहाँ G का

कोई अतुच्छ उचित प्रसामान्य उपसमूह नहीं है।

दर्शाइए कि f एकैकी है। इस तरह सिद्ध कीजिए
कि Z_{p} से S_{4} तक कोई अतुच्छ समूह

समाकारिता नहीं है।
4. (क) पुष्टि करते हुए, एक ऐसे वलय R का उदाहरण

दीजिए जिसमें ऐसे अवयव r और s हों जिनके

लिए $r s=0$ हो, परन्तु $s r \neq 0$ हो।
(ख) दर्शाइए कि किसी वलय में, दो शून्यंभावी
अवयवों के योग का शून्यंभावी होना आवश्यक
नहीं है।
P. T. O.
(ग) जाँच कीजिए कि : 6

$$
\mathbf{F}=\frac{\mathbf{Q}[x]}{\left\langle 2-6 x+x^{3}\right\rangle}
$$

एक क्षेत्र है या नहीं। यदि F एक क्षेत्र है, तो
${\overline{(1-x})^{-1}}^{-1}$ ज्ञात कीजिए। यदि F एक क्षेत्र नहीं है, तो F का विभाग क्षेत्र ज्ञात कीजिए।
5. निम्नलिखित में से कौन-से कथन सत्य हैं और कौन-से सत्य नहीं हैं ? अपने उत्तरों के लिए एक संक्षिप्त उपपत्ति या एक प्रति-उदाहरण के रूप में कारण दीजिए :10
(i) कोटि 9 वाला कोई अनआबेली समूह नहीं होता।
(ii) $\mathbf{M}_{2}(\mathbf{Z})$ से $\mathbf{M}_{3}(\mathbf{Z})$ तक एक एकैकी वलय समाकारिता है।
(iii) एक वलय में, प्रत्येक अभाज्य गुणजावली एक उच्चिष्ठ गुणजावली होती है।
(iv) S_{7} के किसी भी अवयव की अधिकतम कोटि 7 हो सकती है।
(v) $\left\{\mathbf{Z}, \mathbf{I G N O U}, \mathrm{M}_{n}(\mathrm{R})\right\}$ एक समुच्चय है।
6. (क) यह दर्शाने के लिए कि $\forall n \in \mathrm{~N}$,
$\left(4^{n+1}+5^{2 n-1}\right), 21$ द्वारा विभाज्य है, आगमन
नियम का प्रयोग कीजिए।
(ख) गुणन मॉड्यूलो 12 के अंतर्गत एक समूह
$\mathrm{G}=\{\overline{1}, \overline{\mathrm{~b}}, \overline{7}, \overline{1}\} \quad$ पर विचार कीजिए। G के
तुल्याकारी एक क्रमचय समूह ज्ञात करने के
लिए, केली प्रमेय का अनुप्रयोग कीजिए।
7. (क) दर्शाइए कि $\mathrm{Z}[\sqrt{-6}]$ में 10 के अलग-अलग

अखंडनीय गुणनखंडन हैं। इस तरह निर्णय लीजिए कि $\mathrm{Z}[\sqrt{-6}]$ एक यूक्लिडीय प्रांत है या नहीं। 5
P. T. O.

(ख) पुष्टि करते हुए, एक ऐसे समूह \mathbf{G} का उदाहरण

 दीजिए जिसका केन्द्र \mathbf{G} नहीं है। 2(ग) S_{4} में V_{4} के दो वाम सहसमुच्चय दीजिए। अपने उत्तर की पुष्टि कीजिए।
$\left[\mathrm{V}_{4}=\{e,(12)(34),(13)(24),(14)(23)\}\right]$

