BACHELOR'S DEGREE PROGRAMME

MTE-04: ELEMENTARY ALGEBRA &

MTE-05: ANALYTICAL GEOMETRY

Instructions:

 Students registered for both MTE-04 and MTE-05 courses should answer both the question papers in two separate answer-books entering their enrolment number, course-code and course title clearly on both the answer-books.

 Students who have registered for MTE-04 or MTE-05 should answer the relevant question paper after entering their enrolment number, course-code and course-title on the answer-book.

स्नातक उपाधि कार्यक्रम

एम.टी.ई.-04 : प्रारम्भिक बीजगणित

एवं

एम.टी.ई.-05 : वैश्लेषिक ज्यामिति

निर्दे शः

- जो छात्र एम.टी.ई.-04 और एम.टी.ई.-05 दोनों पाठ्यक्रमों के लिए पंजीकृत हैं, दोनों प्रश्न-पत्रों के उत्तर अलग-अलग उत्तर-पुस्तिकाओं में अपना अनुक्रमांक, पाठ्यक्रम-कोड तथा पाठ्यक्रम नाम साफ-साफ लिखकर दें।
- 2. जो छात्र एम.टी.ई.-04 या एम.टी.ई.-05 किसी एक के लिए पंजीकृत हैं, अपने उसी प्रश्न-पत्र के उत्तर, उत्तर-पुस्तिका में अपना अनुक्रमांक, पाठ्यक्रम-कोड तथा पाठ्यक्रम नाम साफ-साफ लिखकर दें।

BACHELOR'S DEGREE PROGRAMME

Term-End Examination-2020

MATHEMATICS

MTE-04: ELEMENTARY ALGEBRA

Time: 1½ Hours]

[Maximum Marks: 25

(Weightage: 70%)

Note: Question No. 5 is compulsory. Do any three question from Q. No. 1 to 4. Use of calculators are not allowed.

1. (a) Check whether or not, for any subsets A and B of a universal set X,

$$A \cap B = A \setminus (A \setminus B)$$

(b) Prove by using the principle of Mathematical induction, that for all $n \in N$,

$$1^2 + 2^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1)$$
 3

 (a) Can the following system of equations be solved by Cramer's Rule? If yes, apply the rule to solve it. Otherwise solve it by the method of elimination:

$$x + y + 3z = 7$$
, $x + 2y = 10 - 4z$, $y + 1 = x + z$
(2) MTE-04/MTE-05 / 3450

- (b) Find all the 5th roots of (-9).
- 3. (a) If a, b and c are the roots of the equation

 $x^3 + qx + r = 0$, then form an equation whose roots are given by:

bc + 1/a, ca + 1/b, ab + 1/c, where $abc \neq 0$.

(b) Formulate the following situation as a system of linear equations. Also find its solution, if it exists.

A firm manufactures two products A and B, in three departments D_1 , D_2 and D_3 . Each unit of product A requires 5 hours in D_1 , 5 hours in D_2 and 1 hour in D_3 . Each unit of product B requires 8 hours in D_1 , 3 hours in D_2 and 8 hours in D_3 . If each of the D_1 , D_2 , D_3 is used for 48 hours per week, what is the quantity of both the products produced per week?

4. (a) Suppose a, b and c are positive real numbers such that:

$$a^3 + b^3 + c^3 = 81$$

Using the Cauchy-Schwarz inequality, find the maximum value of (a + b + c).

(b) If $Z_1 = 3 - 2i$ and $Z_2 = -1 + 5i$, find the values of $|Z_1Z_2|$ and $Arg(Z_1/Z_2)$.

2

- 5. Which of the following statements are True, and Which are False? Justify your answers with a short proof or with a counter example, wherever appropriate. 10
 - $\{\phi, \text{ India}, -\pi\}$ is a set.
 - (ii) If $P(x) = a_n x^n + \dots + a_1 x + a_0$, $a_i \in R$ where *n* is even, then P(x) has at least $\frac{n}{2}$ real roots.
 - (iii) $(\cos \theta + i \sin \theta)^n = (\cos \theta + i \sin \theta)^m$ if and only if n = m, where $n, m \in N$, $\theta \in R$.
 - (iv) If $a^{3\times3}$ matrix A is obtained from a matrix B by interchanging two columns, then |A| = |B|.
 - (v) The maximum value of xyz, where x > 0, y > 0, z > 0, and yz + zx + xy = 12, is 8.

स्नातक उपाधि कार्यक्रम (बी.डी.पी.)

सत्रांत परीक्षा

ऐच्छिक पाठ्यक्रम : गणित

एम.टी.ई.-04 : प्रारंभिक बीजगणित

समय : 1½ घण्टे

अधिकतम अंक : 25

कुल का 70%

नोटः प्रश्न संख्या 5 करना जरूरी है। प्रश्न संख्या 1 से 4 में से कोई तीन प्रश्न कीजिए। कैल्कुलेटरों की अनुमति नहीं है।

1. (क) जाँच कीजिए कि समष्टीय समुच्चय X के किन्हीं उपसमुच्चयों A और B के लिए:

$$A \cap B = A \setminus (A \setminus B)$$

है या नहीं।

(b) गणितीय आगमन के सिद्धान्त का प्रयोग करके, सभी $n \in N$ के लिए सिद्ध कीजिए:

$$1^2 + 2^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1)$$
 3

2. (a) क्या निम्निलिखित समीकरण निकाय क्रेमर नियम से हल हो सकता है? यदि हाँ, तो इस नियम को लागू करके इसे हल कीजिए। अन्यथा, इसे निराकरण विधि से हल कीजिए।

x+y+3z=7, x+2y=10-4z, y+1=x+z

- (b) (-9) के सभी 5वें मूल ज्ञात कीजिए। 2
- 3. (a) यदि a, b and c समीकरण $x^3 + qx + r = 0$ के मूल \ddot{b} , तो वह समीकरण बनाइए जिसके मूल $bc + \frac{1}{a}$,

 $ca + \frac{1}{b}$, $ab + \frac{1}{c}$ हों, जहाँ $abc \neq 0$.

(b) निम्नितिखित समस्या को एक रैखिक समीकरण निकाय के रूप में निरूपित कीजिए। इसका हल भी ज्ञात कीजिए, यदि इसका अस्तित्व हो तो।

एक कम्पनी के तीन विभागों D_1, D_2 और D_3 में दो उत्पाद A और B निर्मित किए जाते हैं। उत्पाद A के प्रत्येक इकाई को D_1 में 5 घण्टे लगते हैं, D_2 में भी 5 घण्टे लगते हैं, और D_3 में एक घण्टा लगता है। उत्पाद B के प्रत्येक इकाई को D_1 में B घण्टे, D_2 में 3 घण्टे, और D_3 में B घण्टे लगते हैं। यदि एक सप्ताह में D_1 , D_2 और D_3 में से 48 घण्टे काम होता है, तो एक सप्ताह में दोनों उत्पादों की कितनी मात्रा निर्मित होगी?

4. (a) मान लीजिए a, b और c ऐसी वास्तविक धन संख्याएँ \hat{b} कि:

$$a^3 + b^3 + c^3 = 81$$

कॉशी-श्वार्त्ज असिमका का प्रयोग करके (a+b+c) का अधिकतम मान ज्ञात कीजिए।

(b) यदि $Z_1 = 3 - 2i$ और $Z_2 = -1 + 5i$ हो, तो $|Z_1Z_2|$

और
$$Arg\left(\frac{Z_1}{Z_2}\right)$$
 के मान ज्ञात कीजिए। 2

- 5. निम्नलिखित में से कौन-से कथन सत्य हैं, और कौन-से असत्य? अपने उत्तरों की पुष्टि एक छोटी उपपित्त से या, जहाँ उपयुक्त हो, एक प्रति-उदाहरण से कीजिए। 10
 - (i) {φ, India, π} एक समुच्चय है।
 - (ii) यदि $P(x) = a_n x^n + + a_1 x + a_0, a_i \in R$ जहाँ n

एक सम संख्या है, तो P(x) के कम-से-कम $\frac{n}{2}$ वास्तविक मूल होंगे।

- (iii) $(\cos \theta + i \sin \theta)^n = (\cos \theta + i \sin \theta)^m$ यदि और केवल यदि n = m, जहाँ $n, m \in N$, $\theta \in R$.
- (iv) यदि $a^{3\times3}$ आव्यूह A को किसी आव्यूह B के दो स्तम्भों को परस्पर बदल कर प्राप्त किया गया हो, तो |A| = |B|.
- (v) xyz का अधिकतम मान 8 होगा, जब x > 0, y > 0, z > 0, और yz + zx + xy = 12 हो।

<u>—</u>х—

BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination

ELECTIVE COURSE: MATHEMATICS

MTE-05: ANALYTICAL GEOMETRY

Time: 1½ Hours]

[Maximum Marks: 25

(Weightage: 70%)

Note: Question No. 1 is <u>compulsory</u>. Answer any three question from Q. No. 2 to 5. Use of calculators are **not** allowed.

Which of the following statements are True, and
 Which are False? Justify your answers:

(i)
$$\begin{vmatrix} x & y & z & 1 \\ 7 & 8 & 5 & 1 \\ 2 & 4 & 6 & 1 \\ 1 & 2 & 3 & 1 \end{vmatrix} = 0$$
 represents a line passing

through the origin.

- (ii) Every conicoid has a centre.
- (iii) The curve $(x-1)^2 + y^2 4xy = 0$ is symmetric

with respect to the x-axis.

- (iv) Given a sphere, there is always another sphere perpendicular to it.
- (v) $\theta = \pi$ represents a line in polar coordinates.
- 2. (a) Find the equation of the right circular cone with vertex at (1, 2, -1), axis as the x-axis and semi-vertical angle $\pi/3$.
 - (b) Find the section of the conicoid $\frac{x^2}{2} \frac{y^2}{3} = z$ by the plane x 2y + z = 1. What conic does this section represent? Justify your answer. 3
- 3. (a) Find the angle between the planes 2x-3y+z=1 and x-y+z=4.
 - (b) Give a rough sketch of the conicoid:

$$\frac{(x-1)^2}{4} + \frac{y^2}{9} + \frac{z^2}{4} = 1$$
. Also find its section by the xy-plane. Does it intersect the x-axis? Give reasons for your answer.

 (a) Find the locus of the point whose distance from the point (0, 2) is five times its distance from

the line
$$\frac{x}{3} + \frac{y}{4} = 1$$
. 2

(10) MTE-04/MTE-05 / 3450

- (b) If $\frac{x}{1} = \frac{y}{1} = \frac{z}{1}$ represents one of the three mutually perpendicular generators of the cone 3xy + z(8x 5y) = 0, find the equation of the other two.
- 5. (a) Reduce the equation:

$$17(x^2 + y^2) + 30xy + 14\sqrt{2}x + 18\sqrt{2}y + 2 = 0$$
 to standard form. Hence identify the object it represents.

(b) Check whether or not 3x-5y=z is a tangent plane of the conicoid $3x^2-6y^2+9z^2+17=0$.

2

स्नातक उपाधि कार्यक्रम (बी.डी.पी.) सत्रांत परीक्षा

ऐच्छिक पाठ्यक्रम : गणित

एम.टी.ई.-05 : वैश्लेषिक ज्यामिति

समय : 1½ घण्टे

अधिकतम अंक : 25

कुल का 70%

नोटः प्रश्न संख्या 1 करना अनिवार्य है। प्रश्न संख्या 2 से 5 में से किन्हीं तीन प्रश्नों के उत्तर दीजिए। कैल्कुलेटरों की अनुमति नहीं है।

 निम्निलिखित कथनों में से कौन-से कथन सत्य और कौन-से असत्य हैं? अपने उत्तरों की पुष्टि कीजिए:

(i)
$$\begin{vmatrix} x & y & z & 1 \\ 7 & 8 & 5 & 1 \\ 2 & 4 & 6 & 1 \\ 1 & 2 & 3 & 1 \end{vmatrix} = 0$$
 $\frac{1}{2}$ $\frac{1}{2}$

रेखा को निरूपित करता है।

(ii) प्रत्येक शांकवज का एक केन्द्र होता है।

- (iii) वक्र $(x-1)^2 + y^2 4xy = 0$ x-अक्ष के सापेक्ष समित है।
- (iv) किसी दिए हुए गोले पर हमेशा एक अभिलम्ब गोला होता है।
- (v) $\theta = \pi$ ध्रुवीय निर्देशांकों में एक रेखा को निरूपित करता है।
- 2. (a) उस लम्बवृत्तीय शंकु का समीकरण ज्ञात कीजिए जिसका शीर्ष (1, 2, -1) पर है, अक्ष x-अक्ष है और अर्धशीर्ष कोण $\frac{\pi}{3}$ है।
 - (b) शांकवज $\frac{x^2}{2} \frac{y^2}{3} = z$ का समतल x 2y + z = 1 से परिच्छेद ज्ञात कीजिए। यह परिच्छेद किस शांकव को निरूपित करता है? अपने उत्तर की पुष्टि कीजिए। 3
- 3. (a) समतलों 2x-3y+z=1 और x-y+z=4 के बीच का कोण ज्ञात कीजिए।

(13)

(b) शांकवजः

$$\frac{(x-1)^2}{4} + \frac{y^2}{9} + \frac{z^2}{4} = 1.$$

का एक स्थूल आरेख बनाइए। <i>xy-</i> तल से इसक	। परिच्छेद
भी ज्ञात कीजिए। क्या यह x-अक्ष से प्रतिच्छेद व	करता है?
अपने उत्तर के कारण दीजिए।	3

- 4. (a) उस बिन्दु का बिन्दुपथ ज्ञात कीजिए जिसकी बिन्दु (0,
 - 2) से दूरी, उसकी रेखा $\frac{x}{3} + \frac{y}{4} = 1$ से दूरी की पाँच गुना है।
 - (b) यदि $\frac{x}{1} = \frac{y}{1} = \frac{z}{1}$ शंकु 3xy + z(8x 5y) = 0 के तीन परस्पर लंब जनकों में से किसी एक को निरूपित करता है, तो अन्य दो जनकों के समीकरण ज्ञात कीजिए।
- (a) समीकरणः

$$17(x^2 + y^2) + 30xy + 14\sqrt{2}x + 18\sqrt{2}y + 2 = 0$$

को मानक रूप में समानीत कीजिए। इस तरह, इसके
द्वारा निरूपित आकृति को पहचानिए।

(b) जाँच कीजिए कि 3x - 5y = z शांकवज $3x^2 - 6y^2 + 9z^2 + 17 = 0$ का स्पर्शतल है या नहीं।

2

—х—