BACHELOR OF SCIENCE (B.Sc.)

Term-End Examination

CHEMISTRY

CHE-05: ORGANIC CHEMISTRY

Time: 2 Hours] [Maximum: Marks: 50

Note: Answer all four questions.

1. Answer any five parts:

- 1×5=5
- (a) Write the common and IUPAC names of the compound given below:

- (b) Give one reaction that can be used for distinction between maleic acid and fumaric acid.
- (c) Draw Fischer projection formula of mesotartaric acid.
- (d) Write the structure of phenyl benzoate.
- (e) Give the structure of enolic form of diethyl ketone.
- (f) Which of the following is a stronger acid and why:

- (i) CH₃COOH
- (ii) CICH2COOH
- (g) Assign the configuration as E/Z to the following compounds:

2. Answer any five parts:

2×5=10

(a) Which of the following is an aromatic compound? Give reason in support of your answer:

(b) Complete the following equations:

(i)
$$CH_3$$
 + CI_2 hv

(ii)
$$CH_3$$
 + Cl_2 FeCl₃ \rightarrow

- (c) Arrange the following alcohols in the increasing order of tendency for dehydration reaction:
 - (i) CH₃CH₂OH
 - (ii) (CH₃)₃COH
 - (iii) (CH₃)₂CHOH

Name the reagent that is used for dehydration.

- (d) Give the sequence of reactions for the conversion of nitro-benzene to bromobenzene. Give the reagents used in each step.
- (e) State Saytzeff rule. What will be the major product of dehydrohalogenation of 2-bromobutane?
- (f) Write the structure of sucrose and name the monosaccharides present in it.

(g) Write products in the following reactions:

$$CH_{2} \xrightarrow{CH_{3}MgI} ?$$

$$CH_{2} \xrightarrow{CH_{3}MgI} ?$$

3. Answer any five parts:

 $3 \times 5 = 15$

- (a) How is phenol obtained by cumene process? Give reaction also. What is the byproduct in this reaction?
- (b) Define the following terms:
 - (i) Octane number
 - (ii) Absolute ethanol
 - (iii) Antibiotic
- (c) Write the structure of product that is obtained when each of the following compounds is treated with nitrous acid (NaNO₂ + HCI) at low temperature:

- (d) Why is it essential to use anhydrous conditions during the preparation of CH₃MgCl? How will you convert CH₃MgCl to:
 - (i) CH₃COOH
 - (ii) (CH₃)₃COH
- (e) Why is the hydrogen in a terminal alkyne acidic in nature? How will you convert the following:

(i)
$$CH_3 - C \equiv CH \rightarrow CH_3 - C \equiv C - CH_3$$

(ii)

$$CH_3 - C = C - CH_3 \rightarrow CH_3 \rightarrow C = C \leftarrow CH_3$$

(f) Give the product and mechanism for the following reaction:

$$CH_2 = CHCOCH_3 + CH_2(COOEt)_2 \xrightarrow{\text{(i) Base, EtOH}}$$

$$\xrightarrow{\text{(ii) H} + H_2O}$$

$$\text{(iii) heat}$$

(g) Draw the conformations of cyclohexane and explain their stability.

4. Answer any five parts:

 $4 \times 5 = 20$

(a) Explain the number of signals and their splitting pattern in the ¹H–NMR spectrum of the following compounds:

(i)
$$CH_3 - C - CH_3$$
Br
Br

- (ii) CH₃CH₂CBr₃
- (b) A compound (X) on ozonolysis gives only one compound (Y). Y on reaction with iodine in presence of sodium hydroxide produces a mixture of CHI₃ and sodium acetate. Write the reactions involved above and structures of X and Y.

- (c) Explain the mechanism of aldol condensation.
- (d) Explain hyperconjugation and hydrogen bonding with suitable examples.
- (e) Explain why?
 - (i) Pyridine is basic in nature
 - (ii) It undergoes an electrophilic substitution at 3-position
- (f) Give one example for each of the following:
 - (i) Sandmeyer reaction
 - (ii) Transestenfication
 - (iii) Diazocoupling
 - (iv) Crown ethers
- (g) Write the product, name and mechanism of the following reaction:

विज्ञान स्नातक उपाधि (बी.एससी.)

सत्रांत परीक्षा

रसायन विज्ञान

सी.एच.ई.-05 : कार्बनिक रसायन

समय : २ घण्टे

अधिकतम अंक : 50

नोटः सभी चार प्रश्नों के उत्तर दीजिए।

1. किन्हीं पाँच भागों के उत्तर दीजिए:

1×5=5

(क) निम्नितिखित यौगिकों के सामान्य और आई०यू०पी०ए०सी० नाम लिखिए:

- (ख) मैलेइक अम्ल और फूमेरिक अम्ल में अंतर करने के लिए प्रयोग की जा सकने वाली एक अभिक्रिया बताइये।
- (ग) मेसो-टार्टरिक अम्ल का फिशर प्रक्षेप सूत्र आरेखित कीजिए।
- (घ) फेनिल बेन्ज़ोऐट की संरचना लिखिए।
- (ङ) डाइएथिल कीटोन के ईनॉल रूप की संरचना दीजिए।

- (च) निम्निलिखित में से कौन-सा अधिक प्रबल अम्ल है और क्यों?
 - (i) CH₃COOH
 - (ii) CICH2COOH
- (छ) निम्नलिखित यौगिकों का E/Z के रूप में विन्यास बताइये:

- 2. किन्हीं पाँच भागों के उत्तर दीजिए: 2×5=10
 - (क) निम्नलिखित में से कौन-सा ऐरोमैटिक यौगिक है? अपने उत्तर की पुष्टि के लिए कारण भी बताइए।

(ख) निम्नलिखित समीकरणों को पूरा कीजिए:

(i)
$$CH_3$$
 + CI_2 h_0

(ii)
$$CH_3$$
 + CI_2 FeC I_3

- (ग) निम्नलिखित ऐल्कोहॉलों को निर्जलीकरण अभिक्रिया की प्रवृत्ति के बढ़ते क्रम में व्यवस्थित कीजिए:
 - (i) CH₃CH₂OH
 - (ii) (CH₃)₃COH
 - (iii) (CH₃)₂CHOH

निर्जलीकरण के लिए प्रयुक्त अभिकर्मक का नाम भी बताइये।

- (घ) नाइट्रोबेन्जीन के ब्रोमोबेन्जीन में रूपान्तरण के लिए अभिक्रियाओं का क्रम दीजिए। प्रत्येक चरण में उपयुक्त अभिकर्मक भी बताइये।
- (ङ) सैत्ज़ेफ नियम लिखिये। 2-ब्रोमोब्यूटेन के विहाइड्रोहैलो-जनीकरण का मुख्य उत्पाद क्या होगा?
- (च) सूक्रोस की संरचना लिखिए और उसमें उपस्थित मोनोसैकेराइडों के नाम बताइये।
- (छ) निम्नलिखित अभिक्रियाओं के उत्पाद लिखिए:

किन्हीं पाँच भागों के उत्तर दीजिए:

- 3×5=15
- (क) क्यूमीन प्रक्रम द्वारा फीनॉल को किस प्रकार प्राप्त किया जाता है? अभिक्रिया भी लिखिए। इस अभिक्रिया में क्या उपोत्पाद प्राप्त होता है?
- (ख) निम्नलिखित पदों की परिभाषा दीजिए:
 - (i) ऑक्टेन संख्या
 - (ii) परिशुद्ध एथानॉल
 - (iii) प्रतिजैविक

(ग) निम्निलिखित यौगिकों की निम्न ताप पर नाइट्रस अम्ल $(NaNO_2 + HCI)$ के साथ अभिक्रिया द्वारा प्राप्त उत्पाद की संरचना लिखिए:

(i)
$$\operatorname{CH}_3$$

(घ) CH₃MgC। के विरचन के लिए निर्जलीय पिरिस्थितियों के प्रयोग की आवश्यकता क्यों होती है? आप CH₃MgC। को निम्नलिखित में किस प्रकार रूपांतरित करेंगे:

- (i) CH₃COOH
- (ii) (CH₃)₃COH
- (ड) किसी अंतस्थ ऐल्काइन में उपस्थित हाइड्रोजन की प्रकृति अम्लीय क्यों होती है? आप निम्नलिखित को किस प्रकार रूपांतरित करेंगे?
- (i) $CH_3 C \equiv CH \rightarrow CH_3 C \equiv C CH_3$

(ii)
$$CH_3 - C \equiv C - CH_3 \rightarrow \begin{array}{c} CH_3 \\ H \end{array} C = C \leftarrow \begin{array}{c} CH_3 \\ H \end{array}$$

(च) निम्नलिखित अभिक्रिया के लिए उत्पाद और क्रियाविधि दीजिए:

CH₂ = CHCOCH₃ + CH₂(COOEt)₂
$$\xrightarrow{\text{(i) क्षारक, EtOH}}$$
 $\xrightarrow{\text{(ii) H}^{+}, \text{ H}_{2}\text{O}}$ $\xrightarrow{\text{(iii) Th}^{+}}$ करने पर

- (छ) साइक्लोहैक्सेन के कॉन्फॉर्मेशन आरेखित कीजिए और उनके स्थायित्व की व्याख्या कीजिए।
- किन्हीं पाँच भागों के उत्तर दीजिए:

4×5=20

(क) निम्नलिखित यौगिकों के ¹H-NMR स्पेक्ट्रम में प्राप्त संकेतों की संख्या और उनके विपाटन पैटर्न की व्याख्या कीजिए:

- (ii) CH₃CH₂CBr₃
- (ख) एक यौगिक (X) ओज़ोनोलिसिस द्वारा केवल एक उत्पाद (Y) बनाता है। Y की सोडियम हाइड्रॉक्साइड की उपस्थित में आयोडीन के साथ अभिक्रिया से CHI₃ और सोडियम ऐसीटेट का मिश्रण प्राप्त होता है।

ऊपर दी गई इन अभिक्रियाओं के लिए समीकरण लिखिए और X और Y की संरचनाएँ बताइये।

- (ग) ऐल्डॉल संघनन की क्रियाविधि की व्याख्या कीजिए।
- (घ) उचित उदाहरणों की सहायता से अति संयुग्मन और हाइड्रोजन आबंधन की व्याख्या कीजिए।
- (ङ) व्याख्या कीजिए कि क्यों:
 - (i) पिरिडीन की प्रकृति क्षारीय होती है?
 - (ii) यह 3-स्थिति पर इलेक्ट्रॉन-स्नेही प्रतिस्थापन अभिक्रिया करती है?
- (च) निम्नलिखित प्रत्येक के लिए एक उदाहरण दीजिए:
 - (i) सैन्डमायर अभिक्रिया

- (ii) विपक्ष एस्टरीकरण
- (iii) डाइएज़ो युग्मन
- (iv) क्राउन ईथर
- (छ) निम्नलिखित अभिक्रिया के लिए उत्पाद, नाम और क्रियाविधि दीजिए:

