M. C. A./B. C. A. REVISED
 (MCA/BCA)

Term-End Examination
 June, 2020

MCS-013 : DISCRETE MATHEMATICS
Time : 2 Hours
Maximum Marks : 50

Note : Question No. 1 is compulsory. Attempt any
three questions from the rest.

1. (a) Check whether the following formula is tautology, contradiction or contingency : 5

$$
\sim((P \rightarrow Q) \rightarrow((R \vee P) \rightarrow(R \vee Q)))
$$

(b) Two finite sets have x and y number of elements. The total number of subsets of the first set is four times the total number of subsets of second set. Find out the value of $x-y$.
(c) In a group of 400 people 250 can speak in English only and 70 can speak Hindi only. 3
(i) How many can speak English ?
(ii) How many can speak Hindi?
(iii) How many can speak both English and Hindi ?
(d) If $f: \mathrm{A} \rightarrow \mathrm{B}$ and $g: \mathrm{B} \rightarrow \mathrm{C}$ are injective function, then g of $: \mathrm{A} \rightarrow \mathrm{C}$ is an injective function. Prove or disprove.
(e) Use the method of proof by contradiction to show that $x \in R$ if $x^{3}+4 x=0$, then $x=0$.
(f) Three persons enter in a railway compartment. If there are 5 seats vacant, in how many ways they can take these seats?2

2. (a) Given:
5

$$
\begin{aligned}
& \mathrm{A}=\{1,3,5,7\} \\
& \mathrm{B}=\{2,3,5,8\}
\end{aligned}
$$

(i) List the elements of $(\mathrm{A} \times \mathrm{B}) \times(\mathrm{B}-\mathrm{A})$.
(ii) Is $(A \times B) \times(B-A)$ a subset of $A \times B$?
(b) Prove that:

$$
{ }^{n} \mathbf{C}_{r}+{ }^{n} \mathrm{C}_{r-1}={ }^{n+1} \mathbf{C}_{r}(0 \leq r \leq n)
$$

3. (a) Show that in any set of eleven integers there are two which are divisible by 10 , by applying pigeonhole principle. 3
(b) How many solutions are there of:

$$
x+y+z=17
$$

subject to the constraints :

$$
\begin{aligned}
& x \geq 1 \\
& y \geq 2 \\
& z \geq 3
\end{aligned}
$$

(c) If: 3

$$
\begin{array}{r}
P(A)=\frac{1}{4} \\
P(B)=\frac{2}{5} \\
\text { and } P(A \cup B)=\frac{1}{2}
\end{array}
$$

find:
(i) $\cdot \mathrm{P}(\mathrm{A} \cap \mathrm{B})$
(ii) $\mathrm{P}\left(\mathrm{A} \cap \mathrm{B}^{\prime}\right)$
P. T. O.
4. (a) Five balls are drawn from a bag containing 6 white and 4 black balls. What is the probability that 3 are white and 2 black ? 3
(b) From the digit 1, 2, 3, 4, 5, 6, how many three digit odd numbers can be formed when
(i) repetition of digit is allowed?
2
(ii) repetition of digit is not allowed?
2
(c) How many numbers divisible by 2 lying between 50,000 and 70,000 can be formed from the digits $3,4,5,6,7,8,9$, no digit being repeated in any number.
5. (a) Show that:
$1.2+2.3+\ldots \ldots . . n(n+1)=\frac{n(n+1)(n+2)}{3}$
(b) Write the negation of the following statement:

If it is raining, then the game is cancelled.
(c) Draw the circuit represented by the following Boolean function: 4

$$
f: x y+\bar{x} y
$$

MCS-013

