MASTER OF COMPUTER APPLICATION/BACHELOR OF COMPUTER APPLICATION (REVISED) (MCA/BCA)
 Term-End Examination June, 2020

MCS-012 : COMPUTER ORGANIZATION AND

 ASSEMBLY LANGUAGE PROGRAMMINGTime : 3 Hours
Maximum Marks : 100
Weigthage : 75\%

Note: (i) Question No. 1 is compulsory and carries 40 marks.
(ii) Attempt any three questions from the rest.

1. (a) Convert the following numbers as stated: 6
(i) $(23.125)_{10}$ to binary
(ii) $(36.5)_{10}$ to octal
(iii) $(135)_{10}$ to hexadecimal
(b) Draw the truth table for the following Boolean function :

$$
\mathrm{F}=(\mathrm{A} \cdot \mathrm{~B}+\mathrm{C})+(\overline{\mathrm{A}} \cdot \mathrm{C})+(\overline{\mathrm{B}} \cdot \mathrm{~A} \cdot \overline{\mathrm{C}})
$$

Use k-map to simplify the above Boolean function. 5
(c) What is the need of Cache memory ?

Explain the direct Cache mapping scheme with the help of an example/diagram. 6
(d) Explain the interrupt-driven I/O technique with the help of a diagram. 4
(e) How is the next instruction that is to be executed brought into Instruction Register for execution ? Explain the sequence of micro-operation that are needed to perform this operation. Which of these micro-operations will take longest time to execute ? Give justification in support of your answer.
(f) How is the large register file of RISC useful?

3
(g) Write a program using 8086 assembly language that finds the larger of two byte values stored in two memory locations named A and B respectively. The larger of two values should be stored in AL register. 6
P. T. O.
(h) Calculate the physical address for the following segment register : 4

Offset (or Register) pair
(i) Offset of date byte in segment (0200) ${ }_{h}$

Data Segment (DS) : (IFFF) h_{h}
(ii) Code Segment Register (CS) : OF10

Instruction Pointer Register (IP) :
2562
2. (a) Explain the 'Stored Program Concept' for a Von Neumann machine.

4
(b) What is an I/O processor ? Explain its characteristics. Explain the selector and multiplexer channels with the help of diagram(s). 6
(c) Consider the Registers R1 having value (1011 0101) ${ }_{2}$ and R 2 having value
(0110 0111) $\mathbf{2}_{2}$. Perform the following operations using R1 and/or R2. The result should be stored in a register R :
(i) Addition of R1 and R2 with carry
(ii) Decrement R1
(iii) Increment R1.
(iv) Subtract R2 from R1

It may be noted that only addition microoperation is allowed.
(d) Explain the FAR procedure call in the context of 8086 assembly language. 4
3. (a) What is an Interrupt Vector Table in 8086 microprocessor ? How is it used to process an Interrupt? Explain with the help of a diagram. 6
Р. Т. О.
(b) Explain the following in the context of micro-programmed control unit :
(i) Control memory
(ii) Sequencing logic
(iii) Vertical micro-instruction
(c) Explain the following in the context of printing technology :
(i) Print quality
(ii) Impact and non-impact printers
(iii) Print resolution
(d) List any four advantages of densely packed integrated circuits. 2
4. (a) What is the use of Multiplexers? Draw and explain the logic diagram of a 4×1 multiplexer. Also draw the truth table for this multiplexer.
(b) A memory chip has a capacity of $1 \mathrm{M} \times 16$
bits :
4
(i) How many address lines does it have?
(ii) What is the capacity of the chip in bytes?
(c) What is an Accumulator base Instruction

Set Architecture? Write the assembly code for the expression $\mathrm{A}=\mathrm{B} * \mathrm{C}+\mathrm{D}$ for Accumulator based machine. 6
(d) What is the role of Flag register in 8086 microprocessor ? Explain the role of any three flags in this register. 4
5. Explain briefly any eight of the following :

$$
8 \times 2 \frac{1}{2}=20
$$

(a) Assembler
(b) Stack segment
P. T. O.
(c) EXE programs
(d) Shift instruction
(e) D flip-flop
(f) Memory interleaving
(g) Latency time in disk access
(h) Normalization of floating point numbers
(i) Unicode
(j) Counters

5520

