BACHELOR OF COMPUTER APPLICATIONS (BCA) (Pre-Revised)

Term-End Examination

CS-73:THEORY OF COMPUTER SCIENCE

Time: 3 Hours]
Maximum Marks : 75
Note: Question number 1 is compulsory. Attempt any three questions from the rest.

1. A. Design a DFA over alphabet $\operatorname{Set}\{a, b\}$, accepting all string that begin with \mathbf{a}.
b. Explain various symbols used in BNF Notation.
c, Write the regular expression over alphabet set $\Sigma=\{0,1\}$ that contain 01 or 10 as substring. 3
d. Define Type - 2 Grammar. Find the language generated by the grammar.
e. Prove that the class of regular language is closed
with respect to intersection.
f. Define Non deterministic Finte automaton.

2
g. Obtain a NFA which accepts $\alpha=\left\{w \in(a, b)^{*}\right\}|w| \geq 3$ and third symbol of w from the right end is a.
h. Define primitive recursive function show that the function
$f(x, y)=x+y$ is
primitive recursive.
2.
a. Find the regular expression for

b. Construct the F.A for the regular expression.

$$
(a b c+d e)^{*}
$$

c. Write the CFG for the language.

$$
\alpha=\left\{a^{m} b^{n} c^{m+n} \quad m, n \geq 0\right\}
$$

3.

a. Construct the PDA of the language.

$$
\alpha=\left\{a^{m} b^{n} \quad n \geq 0\right\}
$$

b. If L_{1} and L_{2} are Context Free language then $L 1$ L2 is Context Free.
c. Design a TN concatenate two strings suppose.
$w_{1}=$ II $\quad w_{1}=$ III
q_{0} llbll| $\vdash^{*} q_{f} I I I I$
4. a. For any two recursive language. 5

L 1 \& L 2 Show that $\mathrm{L} 1 \cap \mathrm{~L} 2$ is also recursive.
b. Consider the function- 5

$$
\begin{aligned}
\text { equals }(x, y) & =1 \text { if } x=y \\
& =0 \quad x \neq y
\end{aligned}
$$

Show that the function is primitive recursive.
c. Define NP complete Problems. Show that vertex cover problem is NP complete.
5. a. Find the solution of the following PCP problem.
$L=(0,01000,01)$
$M=(000,01,1)$
b. Define the following-

i. Pumping L.emma for CFG

ii. Post Correspondence Problem 5
c. Select the dominant term having the steepest increase in n \& specify the lowest Big- oh complexity.
$n^{2} \log _{2} n+n\left(\log _{2} n\right)^{2}$

