No. of Printed Pages : 7

BACHELOR OF COMPUTER APPLICATION (BCA) (PRE-REVISED) Term-End Examination

June, 2020

CS-71 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time : 3 Hours

Maximum Marks : 75

CS-71

Note: (i) Question No. 1 is compulsory.

(ii) Attempt any three questions from question nos. 2 to 5.

(iii) Use of scientific calculator is permitted.

 (a) (i) State the number of significant figures in the following : 2
 0.007 m²; 2.64 × 10²⁴ kg; 0.23709 g/cm³;
 0.0006032 (ii) Let:

 $\alpha=0.459\times 10^0$

 $b = 0.356 \times 10^{-3}$

and $c = 0.354 \times 10^{-3}$

Using three digit decimal arithmetic with rounding, compute (a + b) + c; and a + (b + c).

(b) If:

 $y = 4 \cos x - 6x$

find the relative error and percentage error in y at x = 1 given $\Delta x = 0.005$.

- (c) Evaluate cub root of 73 with the help of
 Newton-Raphson method. 5
- (d) Prove that :

$$\Delta = \frac{1}{2}\delta^2 + \delta\sqrt{1 + \frac{1}{4}\delta^2}$$

3

5

5

[3]

(e)

Apply Trapezoidal rule to find the area bounded by the x-axis, the lines x = 1, x = 4and the curve through the points : 5

x	у
1	2
1.5	2.4
2	2.7
2.5	2.8
3.0	3.0
3.5	2.6
4	2.1

(f) Apply Lagrange's interpolation formula to find f(x) from the following data: 5

x	f (x)
2	8
3	27
4	64

Also compute f(3.5).

P. T. O.

2. (a) Use Euler's method to find the solution of y' = t + y, given y(0) = 1. Find the solution

on
$$[0, .8]$$
 with $h = .2$. 5

(b) Apply Newton's forward interpolation formula on the table of value given below, to find y when x = 2.4: 5

x	$y = e^x$
1.7	5.474
1.8	6.050
1.9	6.686
2.0	7.389
2.1	8.166
2.2	9.025
2.3	9.974

Solve the following system of equations by (c) using Gauss-Elimination method : 5

$$x + \frac{1}{2}y + \frac{1}{3}z = 1$$

 $\frac{1}{2}x + \frac{1}{3}y + \frac{1}{4}z = 0$

$$\frac{1}{3}x + \frac{1}{4}y + \frac{1}{5}z = 0$$

3. (a) Evaluate :

by using Simpson's one-third rule. Take h = 1.0.

Find a real root of the following equation : (b)

$$xe^x = 1$$

correct to three decimals using iteration method. 5

(c) Find a real root of the following equation :

$$x^2 - 2x - 5 = 0$$

correct to three decimals using bisection method. 5

P. T. O.

5

4. (a) Solve the following system of equations by using the Jacobi's method : 5

$$8x + y + z = 8$$
$$2x + 4y + z = 4$$
$$x + 3y + 5z = 5$$

 (b) Solve the following system of equations by using Gauss-Seidel iterative method: 5

 $5x_1 + 2x_2 + x_3 = 12$

 $-x_1 + 4x_2 + 2x_3 = 2$

 $2x_1 - 3x_2 + 10x_3 = -45$

(c) Using Euler's method, find y(0.6) of :

$$\frac{dy}{dx} = 1 - 2xy$$

given that y(0) = 0 taking h = 0.2.

5. (a) Find the approximate value, correct to three decimal places of the real root which lies between -2 and -3 of the equation : 5

$$x^3 - 3x + 4 = 0$$

using Regula-Falsi method.

(b) Solve the following system of equations by using Cramer's rule : 5

10x + y + z = 12

x + 10y + z = 12

x + y + 10z = 12

(c) Use Runge-Kutta method of order four to find y at x = 0.1, 0.2, given that : 5

 $x\left[dy+dx\right]=y\left(dx-dy\right)$

given that y = 1 when x = 0.

