BACHELOR OF COMPUTER APPLICATION (BCA) (PRE-REVISED)

Term-End Examination
June, 2020
CS-71 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Note: (i) Question No. 1 is compulsory.
(ii) Attempt any three questions from question nos. 2 to 5.
(iii) Use of scientific calculator is permitted.

1. (a) (i) State the number of significant figures in the following : 2 $0.007 \mathrm{~m}^{2} ; 2.64 \times 10^{24} \mathrm{~kg} ; 0.23709 \mathrm{~g} / \mathrm{cm}^{3}$; 0.0006032
Р. Т. О.
(ii) Let: 3

$$
a=0.459 \times 10^{0}
$$

$$
b=0.356 \times 10^{-3}
$$

$$
\text { and } c=0.354 \times 10^{-3}
$$

Using three digit decimal arithmetic with rounding; compute $(a+b)+c$; and $a+(b+c)$.
(b) If:

$$
y=4 \cos x-6 x
$$

find the relative error and percentage error in y at $x=1$ given $\Delta x=0.005$.
(c) Evaluate cub root of 73 with the help of Newton-Raphson method. 5
(d) Prove that: 5

$$
\Delta=\frac{1}{2} \delta^{2}+\delta \sqrt{1+\frac{1}{4} \delta^{2}}
$$

(e) Apply Trapezoidal rule to find the area bounded by the x-axis, the lines $x=1, x=4$ and the curve through the points :

x	y
1	2
1.5	2.4
2	2.7
2.5	2.8
3.0	3.0
3.5	2.6
4	2.1

(f) Apply Lagrange's interpolation formula to find $f(x)$ from the following data : 5

x	$f(x)$
2	8
3	27
4	64

Also compute f(3.5).
P. T. O.
2. (a) Use Euler's method to find the solution of
$y^{\prime}=t+y$, given $y(0)=1$. Find the solution on $[0, .8]$ with $h=.2$. 5
(b) Apply Newton's forward interpolation formula on the table of value given below, to find y when $x=2.4$:

5

x	$y=e^{x}$
1.7	5.474
1.8	6.050
1.9	6.686
2.0	7.389
2.1	8.166
2.2	9.025
2.3	9.974

(c) Solve the following system of equations by using Gauss-Elimination method : 5

$$
\begin{aligned}
& x+\frac{1}{2} y+\frac{1}{3} z=1 \\
& \frac{1}{2} x+\frac{1}{3} y+\frac{1}{4} z=0 \\
& \frac{1}{3} x+\frac{1}{4} y+\frac{1}{5} z=0
\end{aligned}
$$

3. (a) Evaluate:

$$
\int_{0}^{6} \frac{1}{1+x^{2}}
$$

by using Simpson's one-third rule. Take $h=1.0$.
(b) Find a real root of the following equation :

$$
x e^{x}=1
$$

correct to three decimals using iteration method.
(c) Find a real root of the following equation:

$$
x^{2}-2 x-5=0
$$

correct to three decimals using bisection method.
4. (a) Solve the following system of equations by using the Jacobi's method :

$$
\begin{aligned}
8 x+y+z & =8 \\
2 x+4 y+z & =4 \\
x+3 y+5 z & =5
\end{aligned}
$$

(b) Solve the following system of equations by using Gauss-Seidel iterative method : 5

$$
\begin{aligned}
5 x_{1}+2 x_{2}+x_{3} & =12 \\
-x_{1}+4 x_{2}+2 x_{3} & =2 \\
2 x_{1}-3 x_{2}+10 x_{3} & =-45
\end{aligned}
$$

(c) Using Euler's method, find $y(0.6)$ of :

$$
\frac{d y}{d x}=1-2 x y
$$

given that $\boldsymbol{y}(0)=0$ taking $h=0.2$.
5. (a) Find the approximate value, correct to three decimal places of the real root which lies between - 2 and -3 of the equation : 5

$$
x^{3}-3 x+4=0
$$

using Regula-Falsi method.
(b) Solve the following system of equations by using Cramer's rule : 5

$$
\begin{aligned}
& 10 x+y+z=12 \\
& x+10 y+z=12 \\
& x+y+10 z=12
\end{aligned}
$$

(c) Use Runge-Kutta method of order four to find y at $x=0.1,0.2$, given that :

$$
x[d y+d x]=y(d x-d y)
$$

given that $\boldsymbol{y}=1$ when $\boldsymbol{x}=0$.

