BACHELOR OF COMPUTER

APPLICATIONS (BCA)

(PRE-REVISED)
Term-End Examination
June, 2020

CS-60 : FOUNDATION COURSE IN MATHEMATICS IN COMPUTING

Time : 3 Hours
Maximum Marks : 75

Note: (i) Question No. 1 is compulsory.
(ii) Answer any three questions from Question No. 2 to 6.
(iii) Use of calculator is permitted.

1. (a) If the lines : 3

$$
\begin{gathered}
x-2 y=6 \\
3 x+4 y=-2
\end{gathered}
$$

and

$$
\lambda x+4 y+\lambda^{2}=0
$$

are concürrent, then find the values of λ.
(b) Find the domain and range of the function f defined by $f(x)=|x-1|$. 3
(c) Check whether the function f defined by: 3

$$
f(x)=\frac{1}{x^{2}}
$$

on the interval] 0,1$]$ is increasing or not.
(d) Find $\frac{d y}{d x}$, where : 3

$$
\frac{x^{2}}{4}+\frac{y^{2}}{9}=1
$$

(e) Find the equation of a line passing through
the point $(-1,-2)$ and with slope $\frac{4}{7}$. 3
(f) Write, down a regular partition for the interval [2, 4] with 7 partitioning points. 3
(g) Evaluate :

3

$$
\lim _{x \rightarrow 4} \frac{x^{2}-16}{x-4}
$$

(h) Which of the following sets are finite and which are infinite?

3
(i) the solution set of $3 x+8=11$.
(ii) the set of points on the diameter of a circle.
(iii) N .
(i) Write the polar form of the complex number $-i$. 3
Р. т. О.
(j) Sketch the ellipse :

$$
\frac{x^{2}}{25}+\frac{y^{2}}{9}=1
$$

(k) Write the Cartesian form of the equation :

$$
r^{2}=2 r \cos \theta
$$

(l) Identify the conic :

$$
x^{2}-2 x y+y^{2}+\sqrt{2} y=2
$$

(m) Evaluate :

$$
\left|\begin{array}{ccc}
3 & -2 & 4 \\
6 & 8 & 1 \\
-9 & 6 & 12
\end{array}\right|
$$

(n) If: 3

$$
\sin y=x \sin (a+y)
$$

prove that :

$$
\frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{\sin a}
$$

(o) Find the equation of the tangent and normal to the curve :

$$
y^{2}=3 x^{2}+1
$$

at the point $(1,2)$.
2. (a) If $1, \omega, \omega^{2}$ are the cube roots of unity, then find the value of :

$$
(1-\omega)\left(1-\omega^{2}\right)\left(1-\omega^{3}\right)\left(1-\omega^{4}\right)\left(1-\omega^{5}\right)
$$

(b) If the sum of two natural numbers is 10 , then find the numbers, when their product is maximum. 4
(c) Determine the equation of a circle if its centre is $(8,-6)$ and passes through the point (5, - 2). 3
3. (a) Find the vertex, focus and directrix of the parabola :

$$
4 y^{2}+12 x-12 y+39=0
$$

(b) Find the centre, the length of the axes, eccentricity and foci of the ellipse :

$$
x^{2}+2 y^{2}-2 x+12 y+10=0
$$

(c) Express :

$$
\frac{(1+i)(2+i)}{3+i}
$$

in the form $a+i b$.
4. (a) Evaluate : 4

$$
\int_{-1}^{1} 5 x^{4} \sqrt{x^{5}+1} d x
$$

(b) Find the equation of the sphere whose centre is $(-6,1,3)$ and radius $4 . \quad 3$
(c) Find the equation of the sphere on the join of $(1,2,3)$ and $(0,4,-1)$ as diameter.
5. (a) If:

$$
\frac{\sqrt{5}-1}{\sqrt{5}+1}+\frac{\sqrt{5}+1}{\sqrt{5}-1}=a+b \sqrt{5}
$$

find a and b.
(b) Prove that:

$$
\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x=\frac{\pi}{4}
$$

(c) Find the area under the given curves and given lines :

$$
y=x^{2}
$$

$x=1, x=2$ and x-axis.
6. (a) A circle passes through $(0,0)$; $(a, 0)$ and $(0, b)$. What is the co-ordinates of the centre of the circle? 4
(b) At which point the line, $x-y=1$ touches the hyperbola $3 x^{2}-4 y^{2}=12$? 3
(c) Solve the following systems of equations using Cramer's rule : 3

$$
x+2 y=7
$$

$$
3 x+2 y=9
$$

770

