MASTER OF ARTS (ECONOMICS)

Term-End Examination June, 2019

07505

MEC-103 : QUANTITATIVE METHODS

Time: 3 hours Maximum Marks: 100

Note: Answer questions from each section as directed

SECTION - A

Answer **any two** questions from this section.

 $2 \times 20 = 40$

1. A price discriminating monopolist operating in three market segments has demand function given by:

$$P_1 = 63 - 4Q_1$$

$$P_2 = 105 - 5Q_2$$

$$P_3 = 75 - 6Q_3$$

Where $Q_1 + Q_2 + Q_3 = Q(\text{total output})$

Its cost function is given by

$$C = 20 + 15Q$$

Find the equilibrium quantities of Q_1 , Q_2 and Q_3 and total profit and price charged in each market segment.

- **2.** (a) Write a linear first-order differential equation and work out its general solution.
 - (b) Write the steps of solving the Harrod Domar model of steady growth through differential equations.
- 3. (a) If \overline{x} is the sample mean, prove that expected value of \overline{x} , $E(\overline{x})$, equals the population mean μ .
 - (b) Describe the process of testing for a hypothesis as population proportion of a given attribute.
- **4.** What is a Poisson distribution? Bring out its important features. Give an example of a problem where you can use Poisson distribution.

SECTION - B

Answer any five questions from this section.

5x12=60

5. A linear programming problem is given as

max
$$z = 30x_1 + 50x_2$$

subject to: $x_1 + x_2 \ge 9$
 $x_1 + 2x_2 \ge 12$
 $x_1 \ge 0, x_2 \ge 0$

Find its optimal solution.

6. From the following data obtain the two regression equations Y on X and X on Y.

Find out the correlation coefficient between X and Y on the basis of regression coefficients.

- 7. What is the difference between Probability Density Function (PDF) and Probability Mass Function (PMF)? Write down the proportion they must satisfy.
- 8. Consider the Cobb-Douglas production function $Q = AL^{\alpha}K^{1-\alpha}$ where $\alpha > 0$. Write down the properties of this production function.
- 9. Solve the following by Cramer's rule:

$$x + 2y + 3z = 6$$

 $2x + 4y + z = 7$
 $3x + 2y + 9z = 14$

10. Solve the following and show it by an appropriate diagram.

Min C =
$$0.6x_1 + x_2$$

subject to: $10x_1 + 4x_2 \ge 20$
 $5x_1 + 5x_2 \ge 20$
 $2x_1 + 6x_2 \ge 12$
 $x_1 \ x_2 \ge 0$

Explain why the solution occurs at corner points only.

- 11. Distinguish between Skewness and Kurtosis. What are the methods of measuring both of the above?
- **12.** Write short note on **any two** of the following:
 - (a) Characteristic vector
 - (b) Eigen value
 - (c) Adjoint and Reciprocal matrices
 - (d) Orthogonal matrix

एम.ए. (अर्थशास्त्र) सत्रांत परीक्षा

जून, 2019

एम.ई.सी.-103 : परिमाणात्मक विधियाँ

समय : 3 घण्टे

अधिकतम अंक : 100

नोट: प्रत्येक भाग से निर्देशानुसार प्रश्न हल करें।

भाग - क

इस भाग से किन्हीं दो प्रश्नों को हल करें।

 $2 \times 20 = 40$

 एक कीमत विभेदक एकाधिकारी तीन बाजारों में कार्य करता है जहाँ उसके समक्ष, क्रमश: ये तीन माँग वक्र हैं:

$$P_1 = 63 - 2Q_1$$

$$P_2 = 105 - 5Q_2$$

$$P_3 = 75 - 6Q_3$$

जहाँ $Q_1 + Q_2 + Q_3 = Q$ (अर्थात कुल उत्पादन)

उसका लगत फलन है : C=20+15Q

तीनों बाजारों में बेची गई मात्राएं, Q_1 , Q_2 , Q_3 वहां वसूली गई कीमतें तथा एकाधिकारी का कुल लाभ आंकलित करें।

- (a) एक रैखिक प्रथम कोटि अवकलन समीकरण लिखें और उसका सामान्य हल आंकलित करें।
 - (b) अवकलन समीकरण के माध्यम से हैरड़-डोमर के स्थैर्यपूर्ण संवृद्धि प्रतिमान को हल करने के सोपान निरूपित करें।

- 3. (a) यदि \overline{x} प्रतिदर्श औसत है तो सिद्ध करें कि \overline{x} का प्रत्याशित मान $\mathrm{E}(\overline{x})$ समष्टि के औसत μ के समान होगा।
 - (b) किसी लक्षण विशेष के समष्टि में अनुपात के विषय में अवधारणा की जाँच की प्रक्रिया का वर्णन करें।
- 4. एक पायजों आबंटन क्या होता है? इसके मुख्य अभिलक्षण स्पष्ट करें। किसी ऐसी समस्या का उदाहरण दे जहाँ आप पायजों आबंटन का प्रयोग कर सकते हैं।

भाग - ख

इस भाग से किन्हीं पाँच प्रश्नों के उत्तर लिखें।

5x12=60

- 5. एक रैखिक प्रोग्रामन समस्या इस प्रकार है : $\max z = 30x_1 + 50x_2$ subject to : $x_1 + x_2 \ge 9$ $x_1 + 2x_2 \ge 12$ $x_1 \ge 0, x_2 \ge 0$ इसके अभीष्ट समाधान आंकलित करें।
- 6. निम्नांकित आँकड़ों का प्रयोग कर Y के X पर तथा X के Y पर प्रतीपगमन समीकरणों का आंकलन करें :
 X 2 4 6 8 10
 Y 5 7 9 8 11
 प्रतीपगमन गुणंकों का प्रयोग कर X तथा Y के बीच सह संबंध गुणंक का आंकलन भी करें।
- प्रायिकता घनता फलन (PDF) तथा प्रायिकता मान फलन (PMF) के बीच भेद स्पष्ट करें। वे अभिलक्षण बताएं जो उन्हें पूरे करने चाहिए।

- 8. इस कॉब-डग्लस उत्पादन फलन पर विचार करें : $Q = AL^{\alpha}K^{1-\alpha}, \, \text{जहाँ } \alpha > 0. \, \text{ इस उत्पादन फलन की विशेषताएं } \\ = aताएं।$
- 9. इन्हें क्रैमर के नियम से हल करें: x + 2y + 3z = 6 2x + 4y + z = 7 3x + 2y + 9z = 14
- 10. इसे हल करें और एक रेखा चित्र द्वारा भी अंकित करें :

Min C =
$$0.6x_1 + x_2$$

subject to :
$$10x_1 + 4x_2 \ge 20$$

 $5x_1 + 5x_2 \ge 20$
 $2x_1 + 6x_2 \ge 12$

$$x_1, x_2 \ge \bar{0}$$

व्याख्या करें कि समाधान किसी कोने के बिन्दु पर ही क्यों होता है।

- 11. तिरछेपन और ककुद्दता में भेद करें। इन दोनों के मापन की विधियां क्या हैं?
- 12. निम्नलिखित में से किन्हीं दो पर संक्षिप्त टिप्पणियां लिखें।
 - (a) अभिलाच्छनिक सदिश
 - (b) आइगन मान
 - (c) संलग्न और विलोम आव्यूह
 - (d) लाम्बिक आव्यूह