

POST GRADUATE DIPLOMA IN APPLIED STATISTICS (PGDAST)

Term-End Examination, 2019

MST-005: STATISTICAL TECHNIQUES

Time: 3 Hours | Maximum Marks: 50

Note: Question No. 1 is compulsory. Answer any four questions from the remaining questions. Use of scientific calculates (non-programmable no. 2 to 7) is allowed. Use of Formulae and Statistical Tables Booklet for PGDAST is allowed. Symbols have their usual meanings.

- State whether the following statements are True or False.
 Give reason in support of your answers: [2x5=10]
 - (a) Three Pseudo Random Numbers (PRN) using Linear Congruential Generator (LCG)
 Method:

$$x_i = (37945x_{i-1} + 932) \mod (10^4)$$
 are

$$x_1 = 3187, x_2 = 1647, x_3 = 6347$$
 and $x_4 = 7947$ where $x_0 = 359$.

- (b) In an examination hall, there are 20 rows and each row has 30 students. A research scholar selects 4 rows randomly and then includes all the students of these selected in his study rows. The research scholar is using two stage sampling technique.
- (c) Possible number of samples of size 10 drawn from a population of size 1000 if sampling is done with replacement will be: 1000C₁₀.
- (d) In a factorial experiment having 3 factors each at7 levels requires 343 combinations.
- (e) In a study null hypothesis is

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$

After applying ANOVA, we reach at the conclusion that H_0 is rejected. It always means that :

$$\mu_1 \neq \mu_2, \, \mu_2 \neq \mu_3, \, \mu_3 \neq \mu_4, \, \mu_4 \neq \mu_5$$

 (a) Explain the procedure of selecting a sample from a population using systematic sampling technique. Write the units of your sample if a systematic random sample of 10000 people from a population of 10,00,000 is drawn under the information that first randomly selected unit is 47. [5]

(b) To determine the yield rate of the rice in a district,5 groups were constructed of 5 plots each.

The data are given in the following table:

Plot No.	Group 1	Group 2	Group 3	Group 4	Group 5
1	10	8	17	14	15
2	12	5	15	8	12
3	9	12	20	6	17
4	20	18	18	10	8
5	.8	6	25	16	10

Select a cluster sample of 3 clusters from the given data and find the sample mean. [5]

3. A manufacturer wishes to determine the effectiveness of four types of machines (A, B, C and D) in the production of bolts. To accumulate this, the numbers of defective bolts produced for each of two shifts in the results are shown in the following table:

Machine	First shift Second shift						-	•		
	М	Т	W	Th	F	М	Т	W	Th	F
Α	6	4	5	5	4	5	7	4	6	8
В	10	8	7	7	9	7	9	12	8	8
С	7	5	6	5	9	9	7	5	4	6
D	8	4	6	5	5	5	7	9	7	10

Perform an analysis of variance to determine at 5% level of significance, whether there is a difference:

- (a) Between the machines and
- (b) Between the shifts

[10]

4. Estimate the missing value in the following LSD and then carry out the analysis of variance test: [10]

Column	1	11	III	IV	
Row					
	A ₈	C 18	B 11	D 8	
11	C ₁₆	B10	D7	ΑY	
111	B ₁₂	D10	A6	C20	
iV	D ₁₀	A 9	C28	B 16	

5. The following table gives the grouped data for number of items demanded per day. They were generated by Poisson distribution algorithm with mean $\lambda=6$. By using

Chi-square test for goodness of fit, test the hypothesis that the generated data fit the Poisson distribution with $\lambda = 6$: [10]

Demand (x):							
Frequency (n _j) :	12	10	12	18	10	20	5

- 6. (a) Draw all possible samples of size 2 from the population {8, 12, 20} and verify that $E(\bar{x}) = \bar{X}$ and find variance of the estimate of the population mean. [6]
 - (b) Using five uniform random variables

$$\boldsymbol{U}_{1} = 0.316, \boldsymbol{U}_{2} = 0.087, \boldsymbol{U}_{3} = 0.270, \boldsymbol{U}_{4} = 0.129, \boldsymbol{U}_{5} = 0.249$$

generate a Binomial random variable B(n, p), with n = 5 and p = 0.2. [4]

- 7. (a) Explain layout of RBD design. [4]
 - (b) Explain sampling and non-sampling error. [4]
 - (c) Explain purposive sampling. [2]

---- X -----