M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc.(MACS)

Term-End Examination, 2019

MMTE-005 : CODING THEORY

Time: 2 Hours

|Maximum Marks : 50
(Weightage : 50\%)

Note : Answer any four questions from questions 1 to 5 . Question 6 is compulsory. All questions carry equal marks. Use of calculators is not allowed.

1. (a) Define the following, giving an example of each :
(i) Self-dual code
(ii) Hamming weight of a code word
(iii) Generator Matrix
(b) Compute the 2 -cyclotomic cosets modulo 7.
2. (a) Define a perfect ccie. Is
$H=\left[\begin{array}{lllllll}0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1\end{array}\right]$ a parity-check
matrix of a perfect code? Give reasons for your answer.
(b) (i) Construct a parity check matrix of the binary Hamming code H_{4} of length 15 .
(ii) Using this parity check matrix, decode the vector (001000001100100) and then check that the decoded vector is a code word.
3. (a) Let C be the narrow-sense binary BCH code of designed distance $\delta=5$, which has a defining set $T=\{1,2,3,4,6,8,9,12\}$. Let α be a primitive 15 th root of unity, where $\alpha^{4}=1+\alpha$, and let the generator polynomial of C be :
$g(x)=1+x^{4}+x^{6}+x^{7}+x^{8}$
If $y(x)=x+x^{4}+x^{7}+x^{8}+x^{11}+x^{12}+x^{13}$ is received, find the transmitted code word. You can use the following table

0000	0	1000	α^{3}	1011	α^{7}	1110	α^{11}
0001	1	0011	α^{4}	0101	α^{8}	1111	α^{12}
0010	α	0110	α^{5}	1010	α^{9}	1101	α^{13}
0100	α^{2}	1100	α^{6}	0111	α^{10}	1001	α^{14}

(b) Let C be the binary code with generator matrix :
$G=\left[\begin{array}{llllll}1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1\end{array}\right]$
(i) Is C self-dual ? Justify your answer.
(ii) Find the weight distribution of C .
4. (a) Find all the possible generator polynomials of $(3,1)$ binary cyclic codes. Find the generator matrix and the parity-check matrix for each code.
(b) Construct the Reed-Muller code G(1, 3). [3]
(c) Prove that if the minimum distance of a code C is d, the minimum distance of the extended code

$$
\begin{equation*}
\hat{\mathrm{C}} \text { is } \mathrm{d} \text { or } d+1 . \tag{3}
\end{equation*}
$$

5. (a) Let C be a cyclic code of length n over F_{q}. with defining set T. Suppose C has minimum weight d. Assume T contains $\delta-1$ consecutive elements for some integer δ. Then show that $\delta \geq 0$.
(b) Let C be the $[5,2]$ binary code generated by $\left[\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1\end{array}\right]$. Find the weight distribution of C . Find the weight distribution of C^{1} by using MacWilliams identity.
6. Which of the following statements are true and which are false? Justify your answer with a short proof or a counter example :
(a) Every self-orthogonal code is self dual.
(b) The code $\mathrm{C}=\{00000,11111\}$ can correct 3 errors.
(c) There is a 2 -cyclotomic set modulo 31 of size 7 .
(d) The Reed-Muller code $R(1,3)$ is a self-dual code.
(c) The code $C=\{0000,0100,1000,0010\}$ is a cyclic code.
