M．Sc．（MATHEMATICS WITH APPLICATIONS
 IN COMPUTER SCIENCE）
 ロロロ51 M．Sc．（MACS）

Term－End Examination

June， 2019

MMTE－004 ：COMPUTER GRAPHICS

Time： $1 \frac{1}{2}$ hours
Maximum Marks ： 25
（Weightage ：50\％）
Note：Question no． 1 is compulsory．Attempt any three questions out of questions no． 2 to 5 ．Use of calculator is not allowed．

1．State whether the following statements are True or False．Justify your answers．

$$
5 \times 2=10
$$

（a）In Bresenham＇s algorithm，while generating a circle，it is easy to generate one octant first and other by successive reflection．
（b）Rotation is a rigid body transformation that moves objects without deformation．
(c) Time spent in scanning across each row of pixels during screen refresh on a raster system with resolution of 1280×1024 and a refresh rate of 60 frames per second is 0.058 secs.
(d) CRT is a non-emissive display device.
(e) While drawing a circle, co-ordinates of only one-eighth of the total pixels lying on circumference of a circle are computed.
2. (a) Digitize a line from $(10,12)$ to $(15,15)$ on a raster screen using Bresenham's straight line algorithm.
(b) What are the advantages of DVST over CRT ? Also list some disadvantages of DVST.
3. A unit square is transformed by 2×2 transformation matrix. The resulting position vectors are

$$
\left(\begin{array}{llll}
0 & 2 & 8 & 6 \\
0 & 3 & 4 & 1
\end{array}\right) .
$$

What is the transformation matrix?
4. (a) Using Cohen-Sutherland line clipping, compute the visible portion of the line segment $A(0.6,0.8), B(2 \cdot 4,1 \cdot 7)$ for window $(x \min , y \min)=(0,0)$ and $(x \max , y \max)=(2,2)$.
(b) Find the normalization transformation window to viewpoint, with window lower left corner at $(1,1)$ and upper right corner at $(3,5)$ onto a viewpoint with window, lower left corner at (0,0) and upper right corner at $\left(\frac{1}{2}, \frac{1}{2}\right)$.
5. (a) The reflection along the line $y=x$ is equivalent to the reflection along the x-axis followed by counter clockwise rotation by θ degree. Find the value of θ.
(b) Write the output obtained after the execution of the following OpenGL statements :
glRotatef($90,0,0,1$)
glScalef(2, 2, 2)
glTranslatef($1,0,0$)

