M. SC. (MATHEMATICS WITH

,
APPLICATIONS IN COMPUTER SCIENCE) (MACS)
Term-End Examination
June, 2019
MMTE-001 : GRAPH THEORY
Time : 2 Hours
Maximum Marks : 50
(Weightage: 50\%)
Note : Question No. 6 is compulsory. Answer any four from questions 1 to 5. Calculators are not allowed.

1. (a) Prove that a bipartite graph has a unique bipartition if and only if it is connected. 5
(b) If G is a simple planar graph with at least 3 vertices, then prove that $e(G) \leq 3 n(G)-6$. Hence decide whether K_{6} is a planar graph or not. 5
2. (a) If u and v are the only odd-degree vertices in a graph G, then show that G contains a $u-v$ path.
(b) State and prove the relationship between the number of vertices and edges in a tree.
(c) Show that $\mathrm{K}_{1,3}$ is an interval graph. 2
3. (a) Apply Kruskal's algorithm to find a minimal spanning tree in the following graph :

4

(b) (i) Show that for every regular connected $X-Y$ bigraph, $|X|=|Y|$.
(ii) Does every regular connected bipartite graph admit a perfect matching ? Justify your answer. 2
(c) Find the girth of Q_{3}. 2
4. (a) Construct a graph G for which χ (G) $=4$ and $\omega(G)=2$. Justify your answer. $\quad 4$
(b) Does every graph G, with $n(G) \geq 2$, have at least two vertices of equal degree? Give reasons for your answer.
(c) Give an example, with justification, of two non-isomorphic graphs with the degree sequence $2,2,2,2,2,2$.
5. (a) Draw a tree T with vertices having, eccentricities 4, 4, 4, 3, 3, 2. Justify your answer.

Further, find the central point of T and the radius of T.
(b) (i) Apply the breadth first search (bfs) algorithm to the following graph, starting at vertex A and showing the bfs tree at each step.

(ii) Also find the shortest paths from A to
every other vertex of this graph. 6
6. Which of the following statements are true ? Give reasons for your answers :
(i) There exists a graph with adjacency matrix being the 5×5 zero matrix.
(ii) A graph with n vertices and $n-1$ edges, for $n \geq 3$, is acyclic.
(iii) Every graph has a perfect matching.
(iv) The chromatic numbers of a planar graph and its dual must be the same.
(y) There is a graph with 6 vertices having 5 cut vertices.

