No. of Printed Pages : 7

M. SC. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) [M. Sc. (MACS)] Term-End Examination June, 2019

MMT-007 : DIFFERENTIAL EQUATIONS AND NUMERICAL SOLUTIONS

Time : 2 Hours
Maximum Marks : 50
(Weightage : 50\%)

Note : Question No. 1 is compulsory. Attempt any faur questions out of the remaining Question Nos. 2 to 7. Use of calculator is not allowed.

1. State whether the following statements are True or False. Justify your answer with the help of a short proof or a counter example. No marks will be awarded without justification.
(a) The initial value problem :

$$
\frac{d y}{d x}=\frac{y+1}{x^{2}}, y(0)=1
$$

has an infinity of solutions.
(b) $\mathrm{L}\left[\int_{0}^{t}(t-x)^{2} \sin x d x\right]=\frac{2}{s\left(s^{2}+1\right)}$, where

L denotes Laplace transform.
(c) In the Crank-Nicolson method, the partial differential equation :

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}
$$

is replaced by the finite difference equation :

$$
(1+r) u_{1}^{j+1}=
$$

$$
u_{1}^{j}+\frac{1}{2} r\left(u_{i-1}^{j+1}+u_{i+1}^{j}+u_{i+1}^{j+1}+u_{i-1}^{j}-2 u_{i}^{j}\right)
$$

where $\quad r=\frac{k}{h^{2}} \quad$ and $\quad k$ and h are mesh lengths in direction of t and x respectively.
(d) For Laguerre polynomials $\mathrm{L}_{n}(x)$:

$$
L_{4}(x)=\frac{1}{L^{4}} x^{4}-16 x^{3}+36 x^{2}-96 x+24
$$

(e) The interval of absolute stability of RungeKutta method :

$$
\begin{aligned}
y_{i+1} & =y_{i}+\frac{1}{2}\left(k_{1}+k_{2}\right), \\
k_{1} & =h f\left(x_{i}, y_{i}\right) \\
k_{2} & =h f\left(x_{1}+h, y_{i}+k_{1}\right)
\end{aligned}
$$

$$
\text { is }-2<\lambda h<0 .
$$

2. (a) Find the series solution about $x=0$ of the differential equation :

$$
x^{2} y^{\prime \prime}+\left(x^{2}+x\right) y^{\prime}+(x-9) y=0
$$

(b) Determine the appropriate Green's function, by using the method of variation of parameters, for the boundary value problem :

$$
\frac{d^{2} y}{d x^{2}}+y=e^{3 x} \sin x
$$

with $y^{\prime}(0)=0, y(1)=0$.
3. (a) Using Laplace transform, solve :

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}, x>0, t>0,
$$

given that:

$$
\begin{aligned}
& u(0, t)=10 \sin 2 t, u(x, 0)=0 \\
& u_{t}(x, 0)=0, \lim _{x \rightarrow \infty} u(x, t)=0
\end{aligned}
$$

(A-18) P. T. O.
(b) Solve the initial value problem :

$$
y^{\prime}=x^{2}+\sqrt{y+1}, y(0)=1
$$

upto $x=0.4$ using predictor-corrector method :

$$
\begin{aligned}
& \mathrm{P}: y_{n+1}^{(\mathrm{P})}=y_{n}+\frac{h}{2}\left(f_{n}-f_{n-1}\right) \\
& \mathrm{C}: y_{n+1}^{(\mathrm{C})}=y_{n}+\frac{h}{12}\left[5 f\left(x_{n+1}\right)\right. \\
& \left.\quad y_{n+1}^{(\mathrm{P})}+8 f_{n}-f_{n-1}\right]
\end{aligned}
$$

with step length $h=0.2$. Compute the starting value using Euler's method and perform two corrector iterations per step.
4. (a) Find the solution of BVP:

$$
\nabla^{2} u=x^{2}+y^{2}, 0 \leq x \leq 1,0 \leq y \leq 1
$$

subject to the boundary condition :

$$
u=\frac{1}{12}\left(x^{4}+y^{4}\right)
$$

on the lines $x=1, y=0, y=1$ and $12 u+\frac{\partial u}{\partial x}=x^{4}+y^{4}+\frac{x^{3}}{3}$ on lines $x=0$ using the five-point formula. Assume
$h=\frac{1}{2}$ along both axes. Use central difference approximation in the boundary conditions.
(b) Prove that:

$$
\mathrm{J}_{\frac{3}{2}}(x)=\sqrt{\frac{2}{(\pi x)}}\left[\frac{1}{x} \sin x-\cos x\right]
$$

5. (a) Using the Crank-Nicolson method, integrate upto 2 times levels for the solution of initial boundary value problem :

$$
\begin{aligned}
& \quad \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, 0 \leq x \leq 1, \\
& u(x, 0)=\sin (2 \pi x) \\
& u(0, t)=0=u(1, t) \\
& \text { with } h=\frac{1}{3}, \lambda=\frac{1}{6} .
\end{aligned}
$$

(b) Show that:

$$
\int_{-1}^{+1} x \mathrm{P}_{n}(x) \mathrm{P}_{n-1}(x) d x=\frac{2 n}{4 n^{2}-1},
$$

where $\mathrm{P}_{n}(x)$ is the nth degree Legendre polynomial.
(A-18) P. T. O.
6. (a) Use finite Fourier transform to solve :

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, 0<x<4, t>0
$$

Subject to the conditions:
(i) $u(x, 0)=2 x, 0<x<4$
(ii) $u(0, t)=0=u(4, t), 0<x<4, t>0$.
(b) Obtain the general solution of the differential equation :

$$
(x+3)^{2} \frac{d^{2} y}{d x^{2}}-4(x+3) \frac{d y}{d x}+6 y=\ln (x+3)
$$

7. (a) Find the solution of an initial value problem, subject to given initial and boundary conditions :

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}
$$

$$
u(x, 0)=2 x \quad \text { for } x \in\left[0, \frac{1}{2}\right]
$$

$$
u(x, 0)=2(1-x) \quad \text { for } x \in\left[\frac{1}{2}, 1\right]
$$

$$
u(0, t)=0=u(1, t)
$$

using Schmidt method with $\lambda=\frac{1}{6}$ and

$$
h=0.2 .
$$

(b) Evaluate :

$$
\mathrm{L}\left\{t^{2} \sin 5 t\right\} .
$$

(c) . Solve the boundary value problem :

$$
\frac{d^{2} y}{d x^{2}}=y \text { with } y(1)=1 \text { and } y^{\prime}(0)=0,
$$

using second order finite difference method with $h=\frac{1}{2}$.

