No. of Printed Pages: 3

MMT-005

M. SC. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCES) [MSC (MACS)] Term-End Examination June, 2019
 MMT-005 : COMPLEX ANALYSIS

Time : $1 \frac{1}{2}$ Hours

Maximum Marks : 25

Note : Question No. 1 is compulsory. Attempt any three questions from Question Nos. 2 to 5. Use of calculator is not allowed.

1. State giving reasons whether the following statements are true or false : 5×2
(a) $f(z)=z^{-2}$ is differentiable at $z=0$.
(b) Radius of convergence of the power series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k!}(z-1-i)^{k}$ is ∞.
(c) $\operatorname{Res}\left(\tan z, \frac{\pi}{2}\right)=-1$.
(d) Every Mobius transformation other than identity has exactly two fixed points.
(e) For every $z \in \not \subset, \log e^{z}=z$.
2. (a) Show that $u(x, y)=x^{3}-3 x y^{2}-5 y$ is harmonic in the entire complex plane. Find the harmonic conjugate function of u. 3
(b) Show the image of the circle $|z|=2$ under the linear fractional transformation

$$
\begin{equation*}
w=\frac{z+2}{z-1} \text { is }|w-2|=2 \tag{2}
\end{equation*}
$$

3. (a) State and prove Liouville's theorem.
(b) Find the maximum value of the function :2

$$
f(z)=\frac{1}{z+2} \text { in }|z| \leq 1 .
$$

4. (a) Find the Laurent series representation of the function :

$$
\begin{equation*}
f(z)=\frac{z}{(z-1)^{3}(z+3)} \tag{3}
\end{equation*}
$$

in the annular region $|z-1|<4$.
(b) Show that $z=\infty$ is a pole of order 1 of:

$$
\begin{equation*}
f(z)=\frac{5 z^{3}}{(z+1)(z-4)} \tag{2}
\end{equation*}
$$

5. Evaluate the integral :

$$
\int_{-\infty}^{\infty} \frac{x d x}{\left(x^{2}-2 x+2\right)^{2}}
$$

