M.Sc. (MATHEMATICS WITH APPLICATIONS
 IN COMPUTER SCIENCE)
 M.Sc. (MACS)
 Term-End Examination
 June, 2019

MMT-004 : REAL ANALYSIS

Time: 2 hours
Maximum Marks : 50
(Weightage: 70\%)
Note: (i) Question no. 1 is compulsory.
(ii) Attempt any four questions out of questions no. 2 to 6.
(iii) Calculators are not allowed.

1. State whether the following statements are True or False. Give reasons for your answers.
(a) If (X, d) is a metric space and $f: \mathrm{X} \rightarrow \mathbf{R}$ is a continuous function, then the set $\{x \in X, f(x)<1\}$ is open.
(b) Every saddle point of the function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ is an extreme point.
(c) The spaces $L^{\prime}(\mathrm{E})$ and $L^{\prime}(\mathrm{E})$ are the same.
(d) Intersection of a countable collection of closed sets is closed.
(e) The Fourier Series of the function $f(x)=|\sin x|$ is a cosine series.
2. (a) Using the definition prove that the interval $[0,1)$ is not compact.
(b) Show that the function $f: \mathbf{R}^{4} \rightarrow \mathbf{R}^{4}$ defined 3 by $f(x, y, z, w)=\left(x^{2}+y^{2}, x+y, w z, y z\right)$ is locally invertible at the point $(1,1,0,1)$.
(c) Use Dominated Convergence Theorem to find

$$
\lim _{n \rightarrow \infty} \int_{1}^{\infty} \frac{n^{2} x^{2}}{1+n^{4} x^{4}} d x
$$

3. (a) Let $X=(R, d)$ where d is the standard metric
and let $\mathrm{F}_{\mathrm{n}}=\left\{x \in \mathrm{R} / 0 \leq x \leq \frac{1}{\mathrm{n}}\right\}$. Verify whether conditions of Cantor's intersection hold for sequence $\left\{F_{n}\right\}$. Does the conclusion also hold ? Justify.
(b) Find the partial and total derivatives of the function $f: \mathbf{R}^{4} \rightarrow \mathbf{R}^{2}$ defined by $f(x, y, z, w)=\left(x^{3} z, y^{2}+w^{2}\right)$ at $(2,2,2,2)$.
(c) Let $\left\{b_{n}\right\}$ be a sequence of non-negative measurable functions such that $\sum_{j=1}^{\infty} \int\left|b_{j}\right| d m$ is finite. Show that the series $\sum_{j=1}^{\infty} \mathrm{b}_{\mathrm{j}}(x)$ converges for almost all x to a function f which is integrable and satisfies

$$
\int\left(\sum_{j=1}^{\infty} b_{j}\right) d m=\sum_{j=1}^{\infty} \int b_{j} d m
$$

4. (a) Show that the function
$f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$
Subject to the constraint
$4 x_{1}^{2}+x_{2}^{2}+2 x_{3}^{2}=14, x_{1}, x_{2}, x_{3} \geqslant 0$
has a minimum value at

$$
\left(\frac{81}{100}, \frac{7}{20}, \frac{7}{25}\right)
$$

(b) Check the connectedness of the following sets. Justify your answer.
(i) $\mathrm{A}=\left\{(x, y) \in \mathrm{R}^{2}: 4 x^{2}+9 y^{2}=16\right\}$ in R^{2}.
(ii) $A=\cup A_{n}$ where $A_{n}=(n, n+1)$ in R.
(c) Define the outer measure of any set $E \subseteq \mathbf{R}$.

Show that the outer measures of the set E and the set $E+y$, where $y \in \mathbf{R}$ are the same.
5. (a) Let (X, d) be any metric space show that $\rho(x, y)$ defined by $\rho(x, y)=\min \{f, \mathrm{~d}(x, y)\}$ is a metric on X.
(b) Obtain the second Taylor's series expansion of the function given by $f\left(x_{1}, x_{2}\right)=x_{1}{ }^{2} x_{2}+5 x_{1} \mathrm{e}^{x_{2}}+\mathrm{e}^{x_{1}} x_{2}{ }^{3}$ at $(1,0)$
(c) Find the Fourier series of the function $f(\mathrm{t})=\mathrm{t}^{2}$ on $[-\pi, \pi]$.
6. (a) Let (X, d) be any metric space and A be a non-empty subset of X. Show that $f(x)=\mathrm{d}(x, \mathrm{~A})$ is uniformly continuous on X .
(b) Suppose $\mathrm{E} \subset \mathbf{R}^{\mathbf{n}}$ is open and $f: \mathrm{E} \rightarrow \mathbf{R}^{\mathrm{m}}$ is 4 differentiable at a point $a \in E$. Prove that all the partial derivatives of ' f ' exist at ' a ' and are continuous at ' a '.
(c) Define Translation and Scaling systems and 3
show that they do not commute.

