No. of Printed Pages : 3

MMT-004

_M.9	5c. (N	AATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS) Term-End Examination
		June, 2019
		MMT-004 : REAL ANALYSIS
Time	: 2 ho	urs Maximum Marks : 50 (Weightage : 70%)
Note	:	 (i) Question no. 1 is compulsory. (ii) Attempt any four questions out of questions no. 2 to 6. (iii) Calculators are not allowed.
1.	State or Fa	whether the following statements are True lse. Give reasons for your answers. 5x2=10
	(a)	If (X, d) is a metric space and $f: X \rightarrow \mathbf{R}$ is a continuous function, then the set $\{x \in X, f(x) \le 1\}$ is open.
	(b)	Every saddle point of the function $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ is an extreme point.
	(c)	The spaces $L'(E)$ and $L'(E)$ are the same.
	(d)	Intersection of a countable collection of closed sets is closed.
	(e)	The Fourier Series of the function $f(x) = \sin x $ is a cosine series.

1

- 2. (a) Using the definition prove that the interval 3[0, 1) is not compact.
 - (b) Show that the function $f: \mathbb{R}^4 \to \mathbb{R}^4$ defined 3 by $f(x, y, z, w) = (x^2 + y^2, x + y, wz, yz)$ is locally invertible at the point (1, 1, 0, 1).
 - (c) Use Dominated Convergence Theorem to **4** find

$$\lim_{n \to \infty} \int_{1}^{\infty} \frac{n^2 x^2}{1 + n^4 x^4} \, dx$$

3. (a) Let
$$X = (\mathbf{R}, d)$$
 where d is the standard metric 3
and let $F_n = \left\{ x \in \mathbf{R}/0 \le x \le \frac{1}{n} \right\}$. Verify

whether conditions of Cantor's intersection hold for sequence $\{F_n\}$. Does the conclusion also hold ? Justify.

- (b) Find the partial and total derivatives of the function $f : \mathbb{R}^4 \rightarrow \mathbb{R}^2$ defined by $f(x, y, z, w) = (x^3 z, y^2 + w^2)$ at (2, 2, 2, 2).
- (c) Let $\{b_n\}$ be a sequence of non-negative

measurable functions such that
$$\sum_{j=1}^{\infty} \int |b_j| dm$$

is finite. Show that the series
$$\sum_{j=1}^{\infty} b_j(x)$$

converges for almost all x to a function f which is integrable and satisfies

$$\int \left(\sum_{j=1}^{\infty} b_j\right) dm = \sum_{j=1}^{\infty} \int b_j dm$$

MMT-004

4. (a) Show that the function $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2$ Subject to the constraint $4x_1^2 + x_2^2 + 2x_3^2 = 14, x_1, x_2, x_3 \ge 0$ has a minimum value at

$$\left(\frac{81}{100}, \frac{7}{20}, \frac{7}{25}\right).$$

(b) Check the connectedness of the following 3 sets. Justify your answer.

4

- (i) $A = \{(x, y) \in \mathbb{R}^2 : 4x^2 + 9y^2 = 16\}$ in \mathbb{R}^2 . (ii) $A = \bigcup A_n$ where $A_n = (n, n+1)$ in \mathbb{R} .
- (c) Define the outer measure of any set $E \subseteq \mathbf{R}$. **3** Show that the outer measures of the set E and the set E + y, where $y \in \mathbf{R}$ are the same.
- 5. (a) Let (X, d) be any metric space show that $\rho(x, y)$ defined by $\rho(x, y) = \min \{f, d(x, y)\}$ is a metric on X.
 - (b) Obtain the second Taylor's series expansion of the function given by $f(x_1, x_2) = x_1^2 x_2 + 5x_1 e^{x_2} + e^{x_1} x_2^{-3}$ at (1,0)
 - (c) Find the Fourier series of the function 3 $f(t) = t^2$ on $[-\pi, \pi]$.
- 6. (a) Let (X, d) be any metric space and A be a 3 non-empty subset of X. Show that f(x) = d(x, A) is uniformly continuous on X.
 - (b) Suppose E⊂Rⁿ is open and f : E→R^m is differentiable at a point a ∈ E. Prove that all the partial derivatives of 'f' exist at 'a' and are continuous at 'a'.
 - (c) Define Translation and Scaling systems and 3 show that they do not commute.

3