M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)

$\square \square \square B 1$ Term-End Examination

June, 2019

MMT-003 : ALGEBRA

Time : 2 hours

Maximum Marks : 50
Note: Question no. 4 is compulsory. Attempt any four questions from the rest of the questions. Calculators are not allowed.

1. (a) If G is a finite group and $Z(G)$ is its centre, prove that $|G|=|Z(G)|+\sum_{i=1}^{n}\left|C_{i}\right|$, where the sum is over all the distinct conjugacy classes containing more than one element. Further, give the class equation of the Klein 4-group.
(b) If χ is a character of a finite-dimensional representation of a finite group G, show that $|\chi(\mathbf{g})|$ is maximum for $g=e$, the identity element of G.
2. (a) Check whether a group of order 156 is simple or not.

3
(b) Calculate the Legendre symbol $\left(\frac{29}{541}\right)$. Justify each step in the calculation.
(c) Define a 'characteristic subgroup' of a group. Also give an example of a subgroup H , of a group G , which is not a characteristic subgroup of G. Justify your choice of example.
3. (a) Let \mathbf{R} be the set of all real numbers and let * be a binary operation on \mathbf{R}, given by $a * b=|a| . b$, for all $a, b \in \mathbf{R}$, where $|a|$ denotes the absolute value of a. Check whether ($\mathbf{R}, *$) is a semigroup or not. If it is, is it also a monoid ? If ($\mathbf{R}, *$) is not a semigroup, find its group kernel. Give reasons for your answer.
(b) For any prime p, show that there are no field homomorphisms between $\mathbf{F}_{\mathrm{p}}{ }^{2}$ and $\mathbf{F}_{\mathrm{p}}{ }^{3}$ in either direction.
(c) Give an example, with justification, of a non-trivial irreducible representation of D_{4}.
4. State, with reasons, which of the following statements are true and which are false.
(i) The polynomial $x^{2}+2 x+2 \in F_{3}[x]$ is irreducible over \mathbf{F}_{3}.
(ii) Any free abelian group is a free group.
(iii) The number of non-isomorphic abelian groups of order 180 is four.
(iv) There is a non-abelian group G for which there exists a faithful representation $\mu: G \rightarrow \mathrm{GL}_{\mathrm{n}}(\mathrm{F})$ such that $\mu(\mathrm{g})$ is a diagonal matrix for every $g \in G$.
(v) The characteristic of a field extension of $F_{p^{3}}(\mathbf{x})$ is 3 .
5. (a) Let $\mathbf{P} \in \mathrm{SO}_{3}(\mathbf{C})$. Check whether or not 1 is an eigenvalue of P.
(b) Find $[\mathrm{K}: \mathbf{Q}]$, where $\mathrm{K}=\mathbf{Q}(\sqrt{5}, \sqrt[5]{11})$, giving detailed reasons for your answer. Further, is $\mathrm{X}^{5}-11$ irreducible over $\mathbf{Q}(\sqrt{5})$? Why, or why not?
6. (a) Check whether or not $\mathrm{x}^{3}+2 \mathrm{x}+1 \in \mathrm{~F}_{5}[\mathrm{x}]$ is a primitive polynomial.
(b) Let $\mathrm{F}, \mathrm{L}, \mathrm{K}$ be fields such that K / F is Galois and $F \subseteq L \subseteq K$. Then prove or disprove that :
(i) L / F is Galois.
(ii) K / L is Galois.

