No. of Printed Pages: 4

MMT-003

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

00781 Term-End Examination

June, 2019

MMT-003 : ALGEBRA

Time : 2 hours

Maximum Marks : 50

Note : Question no. 4 is **compulsory**. Attempt any **four** questions from the rest of the questions. Calculators are not allowed.

1. (a) If G is a finite group and Z(G) is its centre,

prove that $|G| = |Z(G)| + \sum_{i=1}^{n} |C_i|$,

where the sum is over all the distinct conjugacy classes containing more than one element. Further, give the class equation of the Klein 4-group.

(b) If χ is a character of a finite-dimensional representation of a finite group G, show that $|\chi(g)|$ is maximum for g = e, the identity element of G.

5

5

- 2. (a) Check whether a group of order 156 is simple or not.
 - (b) Calculate the Legendre symbol $\left(\frac{29}{541}\right)$. Justify each step in the calculation.
 - (c) Define a 'characteristic subgroup' of a group. Also give an example of a subgroup H, of a group G, which is not a characteristic subgroup of G. Justify your choice of example.
- 3. (a) Let R be the set of all real numbers and let
 * be a binary operation on R, given by
 a * b = |a|. b, for all a, b ∈ R, where |a|
 denotes the absolute value of a. Check
 whether (R, *) is a semigroup or not. If it is,
 is it also a monoid ? If (R, *) is not a
 semigroup, find its group kernel. Give
 reasons for your answer.
 - (b) For any prime p, show that there are no field homomorphisms between \mathbf{F}_{p}^{2} and \mathbf{F}_{p}^{3} in either direction.
 - (c) Give an example, with justification, of a non-trivial irreducible representation of D_4 . 3

MMT-003

2

3

4

3

3

- **4.** State, with reasons, which of the following statements are *true* and which are *false*.
 - (i) The polynomial $x^2 + 2x + 2 \in \mathbf{F}_3[x]$ is irreducible over \mathbf{F}_3 .
 - (ii) Any free abelian group is a free group.
 - (iii) The number of non-isomorphic abelian groups of order 180 is four.
 - (iv) There is a non-abelian group G for which there exists a faithful representation $\mu: G \to GL_n(F)$ such that $\mu(g)$ is a diagonal matrix for every $g \in G$.
 - (v) The characteristic of a field extension of $\mathbf{F}_{n3}(\mathbf{x})$ is 3.
- 5. (a) Let $P \in SO_3(C)$. Check whether or not 1 is an eigenvalue of P.
 - (b) Find [K : Q], where K = Q($\sqrt{5}$, $\sqrt[5]{11}$), giving detailed reasons for your answer. Further, is X⁵ - 11 irreducible over Q($\sqrt{5}$)? Why, or why not?

P.T.O.

4

6

10

- 6. (a) Check whether or not $x^3 + 2x + 1 \in \mathbf{F}_5[x]$ is a primitive polynomial.
 - (b) Let F, L, K be fields such that K/F is Galois and $F \subseteq L \subseteq K$. Then prove or disprove that :
 - (i) L/F is Galois.
 - (ii) K/L is Galois.

6