No. of Printed Pages : 3

MMT-002

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

D1111 June, 2019

MMT-002 : LINEAR ALGEBRA

Time : $1\frac{1}{2}$ hours

Maximum Marks : 25 (Weightage : 70%)

- Note: Question no. 5 is compulsory. Answer any three questions from questions no. 1 to 4. Use of calculators is **not** allowed.
- 1. Let T be linear operator on \mathbb{R}^3 .

Let $\mathbf{B} = \left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix} \right\}$ be a basis of \mathbf{R}^3 . The matrix of T with respect to \mathbf{B} is $\begin{bmatrix} 0 & 0 & 1\\1 & 1 & 0\\1 & 0 & 0 \end{bmatrix}$.

MMT-002

P.T.O.

Check whether or not T is a bijection. If T^{-1} exists, write down the matrix of T^{-1} with respect to the basis $\mathbf{g}' = \left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}$. If T^{-1} does not

exist, check whether or not T is diagonalisable.

5

- 2. (a) Write the Jordan form of a 4×4 matrix whose minimal polynomial is $(x - 3)^2 (x - 2)$ and the geometric multiplicity of 3 is two, giving reasons for your answer. $1\frac{1}{2}$
 - (b) Show the the matrix $\mathbf{B} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ is

positive semi-definite. Find a positive semi-definite matrix A such that $A^2 = B$. $3\frac{1}{2}$

3. (a) Find the least square solution to : 4

x + y + t = 1 x - y = 2 x + y = 2y + t = 1

(b) If USV* is the SVD of $\begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix}$, find S and V. 1

MMT-002

2

4. (a) Construct the QR-decomposition for

$$\mathbf{X} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}.$$

(b) Find a 2 × 2 matrix X such that $e^A = e^2 X$, where $A = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$. 2

5. Which of the following statements are *True* and which are *False*? Justify your answers. $5 \times 2=10$

- (a) If two $n \times n$ matrices have the same determinant and trace, they must be similar.
- (b) A nilpotent matrix has at least one of the entries 0.
- (c) The generalized inverse of an invertible matrix is its inverse.
- (d) Every unitary matrix has determinant 1.
- (e) Every normal operator is self-adjoint.

MMT-002

1,200

3