No. of Printed Pages : 3
MMT-002

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)
 Term-End Examination

$\square 1111$
June, 2019

MMT-002 : LINEAR ALGEBRA

Time: $1 \frac{1}{2}$ hours
Maximum Marks : 25
(Weightage : 70\%)
Note: Question no. 5 is compulsory. Answer any three questions from questions no. 1 to 4. Use of calculators is not allowed.

1. Let T be linear operator on \mathbf{R}^{3}.

Let $B=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right\}$ be a basis of \mathbf{R}^{3}. The
matrix of T with respect to B is $\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$.

Check whether or not T is a bijection. If T^{-1} exists, write down the matrix of T^{-1} with respect to the basis $\mathbf{Q}^{\prime}=\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$. If T^{-1} does not exist, check whether or not T is diagonalisable.
2. (a) Write the Jordan form of a 4×4 matrix whose minimal polynomial is $(x-3)^{2}(x-2)$ and the geometric multiplicity of 3 is two, giving reasons for your answer. $1 \frac{1}{2}$
(b) Show the the matrix $B=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$ is positive semi-definite. Find a positive semi-definite matrix A such that $\mathrm{A}^{2}=\mathrm{B}$. $3 \frac{1}{2}$
3. (a) Find the least square solution to:

$$
\begin{aligned}
& x+y+t=1 \\
& x-y=2 \\
& x+y=2 \\
& y+t=1
\end{aligned}
$$

(b) If $U S V^{*}$ is the SVD of $\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$, find S and V.
4. (a) Construct the QR-decomposition for

$$
\mathrm{X}=\left[\begin{array}{lll}
1 & 0 & 1 \tag{3}\\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

(b) Find a 2×2 matrix X such that $e^{A}=e^{2} X$, where $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]$.
5. Which of the following statements are True and which are False? Justify your answers.

$$
5 \times 2=10
$$

(a) If two $\mathrm{n} \times \mathrm{n}$ matrices have the same determinant and trace, they must be similar.
(b) A nilpotent matrix has at least one of the entries 0 .
(c) The generalized inverse of an invertible matrix is its inverse.
(d) Every unitary matrix has determinant 1.
(e) Every normal operator is self-adjoint.

