BACHELOR'S DEGREE PROGRAMME (BDP)

C
N
∞
N

ELECTIVE COURSE : MATHEMATICS MTE-003 : MATHEMATICAL METHODS

Time : 2 hours
Maximum Marks: 50
(Veightage: 70\%)
Note: (i) Question No. 7 is Compulsory.
(ii) Attempt any four Question from Question number 1 to 6.
(iii) Use of calculator is NOT allowerd.
(iv) Standard notations are used.

1. (a) Urns A, B and C contain respectively,

A : 6 Red, 4 Black; B: 4 Red, 6 Black; C:3
Red, 7 Black balls. An Lirn is chosen randomly, and a ball is drawn from it, which was red. What is the probability that the Urn B was chosen ?
(b) The sum of two numbers is 40 . Find the 3 maximum value of their product.
(c) Verify De Morgan's law for the sets A and 4 B where $\mathrm{U}=\{1,2,3,4, \ldots \ldots\},. \mathrm{A}=\{2,4,6, \ldots \ldots\}$, $B=\{1,3,5, \ldots \ldots \ldots\}$. If function $f: \mathbf{R} \rightarrow \mathbf{R}$ and $\mathrm{g}: \mathbf{R} \rightarrow \mathbf{R}$ are defined by $f(x)=x-1$ and $g(x)=x+1$, then find fof (x) and $\operatorname{gog}(x)$.
2. (a) From a bivariate data, the following summarizations were obtained:

$$
\mathrm{n}=5, \quad \Sigma x=20, \quad \Sigma y=6.7, \quad \Sigma x^{2}=90
$$ $\Sigma y^{2}=10.19, \Sigma x y=29.8$. Find the regression line of y on x.

(b) Find the arithmatic mean of first n natural numbers.
(c) Solve:
$(2 x+3 y-6) \mathrm{d} y=(6 x-2 y-7) \mathrm{dx}$.
3. (a) Calculate mode, Q_{1}, Q_{2}, Q_{3} and Quartile 5 deviation for the following data :

Marks	$0-10$	$10-20$	$20-31)$	$30-40$	$40-50$	$50-60$	$60-70$
No. of student	6	5	8	15	7	6	3

(b) The position vectors of points P, Q, R are 3 $i+2 j+3 k, \quad-2 i+3 j+5 k \quad$ and $\quad 7 i-k$, respectively. Prove that P, Q and R are collinear.
(c) Find the slope of the circle $x^{2}+y^{2}=25$ at 2 the point $(3,-4)$.
4. (a) If $f(x)=\left\{\begin{array}{cc}1 ; & x \leq 3 \\ a x+b ; & 3<x<5\end{array}\right.$

$$
7 ; \quad 5 \leq x
$$

determine the value of a and b so that $f(x)$ is continuous.
(b) A reading test is given to an elementary school class that consists of 12 girls and 10 boys. The results of the test are :

	Girls	Boys
Mean	74	70
S.D	8	10

Is the difference between the means of the two groups significant at 5% level of significance?

$$
\left[t_{20,0.05}=2.086, t_{22,0.05}=2.074, t_{21,0.05}=2.080\right]
$$

(c) A question paper has two parts, Part A and

2
Part B, each containing 10 questions. If the student has to choose 8 questions from Part A and 5 questions from Part B, in how many ways can the questions be chosen?
5. (a) Find the equation of a circle passing through the origin and whose centre is the point of intersection of the lines $x+y+1=0$ and $x-2 y+4=0$.
(b) In a certain Poisson distribution the probability of 3 success is exactly equal to the probability of 4 successes. Find its mean and standard deviation. Also find the probability of more than 1 success for the given distribution.
(c) If $z=\frac{1}{2} \ln \left(x^{2}+y^{2}\right)$, show that 2
$\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=0$.
6. (a) If X has the probability density

$$
f(x)=\left\{\begin{array}{cc}
\operatorname{ke}^{-3 x}, & \text { for } x>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

Find :
(i) the value of the constant k
(ii) $\mathrm{P}(0.5 \leq \mathrm{X} \leq 1)$
(iii) mean of X
(iv) variance of X
(b) Measurements of a sample of six weights were determined as $8.5,10.6,9.8,8.8,10.4$ and 9.5 kilograms, respectively. Determine an unbiased estimate of the population mean and population standard deviation. Also determine the estimate of the variance of the sample mean.
(c) Prove that $\sum_{r=0}^{n} C(n, r)=2^{n}$, where $C(n, r) \quad 2$ are the binomial Co-efficients.
7. Which of the following statements are true/false. Give reasons in support of your answer.

$$
2 \times 5=10
$$

(a) $\quad f(x)=1+\sqrt{x}$, can be expanded in a Maclaurin series.
(b) Type - I error and level of significance are same.
(c) Function $f:[1,3] \rightarrow[5,15]$ defined by $f(x)=x^{2}+2 x-3$ is monotonically increasing.
(d) The mode of a given data, if it exists is unique.
(e) $x=b$ is an asymptote parallel to the x-axis for the curve $y^{2}(x-b)=x^{3}+a^{3}$.

जून, 2019

ऐच्छिक पाठ्यक्रम : गणित एम.टी.ई.-003 : गणितीय विधियाँ

समय : 2 घण्टे
अधिकतम अंक : 50
(कुल का : 70\%)
नोट : (i) प्रश्न सं. 7 अनिवार्य है।
(ii) प्रश्न सं. 1 से 6 में से किन्हीं चार प्रश्नों के उत्तर दीजिए।
(iii) कैल्कुलेटर का प्रयोग करने की अनुमति नहीं है।
(iv) प्रतीकों के सामान्य अर्थ हैं।

1. (a) तीन बर्तनों A, B, C में क्रमशः $A: 6$ लाल, 4 काली; 3
$B: 4$ लाल, 6 काली; $C: 3$ लाल, 7 काली गेंदें हैं। एक बर्तन को यादृच्छया चुना गया और उसमें से एक गेंद निकाली गयी जिसका रंग लाल था। इस बात की प्रायिकता क्या है कि चुना गया बर्तन B था ?
(b) दो संख्याओं का योग 40 है। संख्याओं के गुणनफल का 3 अधिकतम मान ज्ञात कीजिए।
(c) समुच्चयों A और B के लिए द मॉर्गन नियम की जाँच 4 कीजिए जहाँ $\mathrm{U}=\{1,2,3,4, \ldots \ldots .\},. \mathrm{A}=\{2,4,6$,\}, और $B=\{1,3,5, \ldots \ldots$.$\} यदि फलन,$ $f: \mathbf{R} \rightarrow \mathbf{R}$ और $\mathrm{g}: \mathbf{R} \rightarrow \mathbf{R}, f(x)=x-1$ और $\mathrm{g}(x)=x+1$, द्वारा परिभाषित हों तो $\mathrm{fof}(x)$ और $\operatorname{gog}(x)$ ज्ञात कीजिए।
2. (a) द्विचरी आँकड़ों से निम्नलिखित संक्षेपण प्राप्त किए गए :
$\mathrm{n}=5, \quad \Sigma x=20, \quad \Sigma y=6.7, \quad \Sigma x^{2}=90$,
$\Sigma y^{2}=10.19, \Sigma x y=29.8$
x पर y की समाश्रयण रेखा ज्ञात कीजिए।
(b) प्रथम n प्राकृतिक संख्याओं का समांतर माध्य ज्ञात कीजिए। 2
(c) हल कीजिए :

4
$(2 x+3 y-6) \mathrm{d} y=(6 x-2 y-7) \mathrm{d} x$
3. (a) निम्नलिखित आँकड़ों का बहुलक, Q_{1}, Q_{2}, Q_{3} और 5 चतुर्थक विचलन परिकलित कीजिए :

अंक	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$
विद्यार्थीयों की संग्या।	6	5	8	15	7	6	3

(b) बिंदुओं $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ के स्थिति सदिश क्रमश: $i+2 j+3 k$, 3 $-2 i+3 j+5 k$ और $7 i-k$, हैं। सिद्ध कीजिए कि P, Q, R संरेख हैं।
(c) बिंदु $(3,-4)$ पर वृत्त $x^{2}+y^{2}=25$ की प्रवणता ज्ञात कीजिए।
4. (a) यदि $f(x)=\left\{\begin{array}{cc}1 ; & x \leq 3 \\ \mathrm{a} x+\mathrm{b} ; & 3<x<5 \\ 7 ; & 5 \leq x\end{array}\right.$ 4

तब a और b के मान निर्धारित कीजिए जिससे कि $f(x)$ संतत हो।
(b) एक प्रारंभिक स्कूल की कक्षा, जिसमें 12 लड़कियाँ और 10 लड़के हैं, में पढ़ने का टेस्ट लिया गया। टेस्ट का परिणाम निम्न है :

	लड़कियाँ	लड़के
माध्य	74	70
मानक विचलन	8	10

क्या 5% सार्थकता स्तर पर दोनों समूहों के माध्यों के बीच अंतर सार्थक है ?
$\left[\mathrm{t}_{20,0.05}=2.086, \mathrm{t}_{22,0.05}=2.074, \mathrm{t}_{21,0.05}=2.080\right]$
(c) एक प्रश्न पत्र में दो भाग हैं - भाग A और भाग B और

प्रत्येक भाग में 10 प्रश्न है। यदि विद्यार्थी को भाग A में से 8 प्रश्न और भाग B में से 5 प्रश्न चुनने हों तो, प्रश्न कितने तरीकों से चुने जा सकते है ?
5. (a) एक ऐसे वृत्त का समीकरण ज्ञात कीजिए जो मूल बिंदु से 4 होकर गुजरता है और जिसका केंद्र रेखाओं $x+y+1=0$ और $x-2 y+4=0$ का प्रतिच्छेद बिंदु है।
(b) किसी प्वांसा बंटन में तीन सफलताओं की प्रायिकता 4 ठीक चार सफलताओं की प्रायिक्रता के बराबर है। इसका माध्य और मानक विचलन ज्ञात कीजिए। दिए गए बंटन के लिए एक से अधिक सफलता की प्रायिकता भी ज्ञात कीजिए।
(c) यदि $z=\frac{1}{2} \ln \left(x^{2}+y^{2}\right)$ तो दिखाइए कि
$\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=0$
6. (a) यदि X का प्रायिकता घनत्व फलन

$$
f(x)=\left\{\begin{array}{cc}
k \mathrm{e}^{-3 x}, & x>0 \text { के लिए } \\
0, & \text { अन्यथा }
\end{array}\right.
$$

हो, तो निम्नलिखित ज्ञात कीजिए :
(i) अचर k का मान
(ii) $\mathrm{P}(0.5 \leq \mathrm{X} \leq 1)$
(iii) X का माध्य
(iv) X का प्रसरण
(b) छह भारों के प्रतिदर्श के माप क्रमशः $8.5,10.6,9.8$, $8.8,10.4$ तथा 9.5 कि. ग्रा. प्राप्त किए गए। समष्टि माध्य का अनभिनत आकलन और समष्टि मानक विचलन ज्ञात कीजिए। प्रतिदर्श माध्य के प्रसरण का आकलन भी निर्धारित कीजिए।
(c) सिद्ध कीजिए कि $\sum_{\mathrm{r}=0}^{\mathrm{n}} \mathrm{C}(\mathrm{n}, \mathrm{r})=2^{\mathrm{n}}$, जहाँ $\mathrm{C}(\mathrm{n}, \mathrm{r}) \quad 2$ द्विपद गुणांक है।
7. निम्नलिखित कथनों में से कौन से कथन सत्य हैं और कौन से असत्य? अपने उत्तर के कारण बताइए।
(a) $f(x)=1+\sqrt{x}$ को मैक्लोरिन श्रेगी में विस्तारित किया जा सकता है।
(b) प्रथम प्रकार की त्रुटि और सार्थकता-स्तर समान होते हैं।
(c) $f(x)=x^{2}+2 x-3$ द्वारा परिभाषित फलन $f:[1,3] \rightarrow[5,15]$ एकदिष्टत: वर्धमान है।
(d) यदि दिए गए आँकड़ों के बहुलक का अस्तित्व है तो वह अद्वितीय होगा।
(e) $x=\mathrm{b}$ वक्र $y^{2}(x-\mathrm{b})=x^{3}+\mathrm{a}^{3}$ का x-अक्ष के समांतर अनंतस्पर्शी है।

