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BACHELOR’S DEGREE PROGRAMME
(BDP)
Term-End Examination
_ June, 2019
(ELECTIVE COURSE : MATHEMATICS)
MTE-02 : LINEAR ALGEBRA
Time : 2 Hours _ Maximum Marks : 50

Weightage : 70%

Note : Question No. 7 is compulsory. Attempt any
four questions from Question Nos. 1 to 6.

Use of calculators is not allowed.

1. (a) Show that:
W= {(xl-,xz,xe,) eR3 | x +x9+25 = 0}

is a subspace of R3. Find a basis of W and
then extend that basis to a basis of R3.
Further,' check whether ‘the .subspace‘
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X= {(xl,xz,x3) eR3:x —x, = 0} of R8 is
the same as W or not. Also, find
dim (W n X). _ 7
Let {u,v,w} be an orthonormal set of
vectors in R3. Show that they are linearly

independent over R. Check whether

w-v,u+u, w are orthogonal over R or

not. 3
Let T:R3 > RZ be given by :

T (%, %9, 23) = (2 + %g + %3, %5 + 23 ).
Prove that T is a linear transformation.

Also find the rank and nullity of T. 3

Can the following system of linear
equations be solved by Cramer’s"ru_le ?If
yes, apply the rule to solve.it. If the rule is
not applicable wuse the Gaussian
elimination method to solve the system : 4

3x+2y =3

2x +3y =2 - 4z
bx + Ty =5
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Find the radius of the circular section of

the sphere |r|=9 by the plane
ro(Gi-j-k)=9. " | 3
Ie¢ T = R2 - R? be a linear
transformation given by -

T (%, %3) = (%1 + %3, %, % — %3)-

Show that {(LI), (1, O} and {1, 1, 0),
(1, 0, 1), (0, 1, 1)} are bases of R2 and R3

respectively. Find the matrix of T with

respect to these ordered bases. 5

.U'sing the Gram-Sohmidt procedure find an -

orthonormal set of vectors cotresponding to
the ordered basis B = {(1, 1, 1), (1, 1, 0),

' (1,0,0)) of R%. Also find a basis dualto B. 5

Obtain a solution set for the linear

system : | 5
x — 2%, ~ 3% = 0
~2x +4x5 +6x3 =0
' x1'+2x2—5v=_0 |
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Check whether or not the matrix -
1
A=(0 2 3
0 0 3
is diagonalisable. If it is find a matrix P so

that P-1APis a diagonal matrix. If A is not

- diagonalisable, obtain its minimal

polynomial. . - .5

Obtain the adjoint of ' the matrix

011 !
A={1 0 1|.Henceobtain A™. 5

110

Reduce the quadratic form 5x2 - 4xy + 8y2

to its orthogonal canonical form, clearly

giving the transformations being “used.

Also give a rough sketch of the curve

representing this canonical form. 5

Let A be an n x n matrix, n>2 . Let
S={BeM,(R)|BA = AB}. Show that S

satisfies all the axioms for being a real -

vector space with respect to addition and
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scalar multiplication of matrices. Further,

show that the dimenéion of S over R is

greater than one. ' ' ' 8

. {b) Give a relation bn Z which is transitive but

not symmetric. Justify your answer. 2

Which of the following statements are true and
which are false ? Justify your answer either
with a short proof or with a counter-

example : 10

(i) The sum of two invertible matrices is an
invertible matrix.

(ii) The minimal polynomial of an n x n matrix .
is of degree n.

(iii) If A is a unitary matrix, then all its eigen
values are 1.

Gv) If A, B, C are three subsets of a universal
set U, then:

- (AnB)UC=AN(BuUC).

() Given any n e N, it is possible to define a
linear transformation whose kernel has
dimension n.
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