CHE-10

BACHELOR OF SCIENCE (B.Sc.)

Term-End Examination, 2019

CHEMISTRY

CHE-10: SPECTROSCOPY

Time: 2 Hours]

|Maximum Marks: 50

Note: Answer any five questions. All questions carry equal marks. Use of log tables and non-programmable calculator is allowed.

 $\beta_e = 9.274 \times 10^{-24} \, \mathrm{JT^{-1}}$; **h** = 6.626 × 10⁻³⁴ Js ; **c** = 2.998 × 10⁸ ms⁻¹; **e** = 1.6 × 10⁻¹⁹C

- (a) Derive the term symbol for the possible spectroscopic states of carbon. [5]
 - (b) The staggered conformation of ethane has **S**₆ improper axis of symmetry. Illustrate the operations involved. [3]
 - (c) Calculate the energy (in Joules) associated with a radiation of wavelength, $\lambda = 460$ nm. [2]
- (a) The rotational constants of ¹²C ¹⁶O and ¹³C ¹⁶O are 1.92118 cm⁻¹ and 1.83669 cm⁻¹, respectively.

CHE-10

(1)

[P.T.O.]

Given that the atomic masses of ¹²C and ¹⁶O are, respectively 12 and 15.9994 find the atomic mass of ¹³C. [4]

- (b) Give reasons for the following: [3]
 - (i) The >C=O group frequency in acyl chlorides is higher than that in alkyl esters.
 - (ii) The >C=O group frequency in methyl acetate is less than that in phenyl acetate.
- (c) Predict the shape of PCI₃ using VSEPR theory.

 Draw its structure. [3]
- (a) HCI molecule shows an IR absorption at 2890 cm⁻¹. Determine its force constant and maximum displacement for v = 3. Given that the atomic masses of H and cℓ are 1 × 10⁻³ kg and 35.5 × 10⁻³ kg, respectively. [4]
 - (b) The two peaks at 2349 and 667 cm⁻¹ in the IR spectrum of CO₂ are found to be absent in Raman spectrum while the peak at 1340 cm⁻¹ is Raman active only. Explain by assigning the peaks to respective modes of vibration. [3]

(c)	What are Stokes and anti-Stokes lines? Why it		
	that of anti-stokes lines?	3]	
(a)	Name the sources used for the following	ng	
	spectrophotometric techniques :	2]	
•	(i) Microwave		
	(ii) Infrared		
	(iii) Raman		
	(iv) Ultraviolet		
(b)	State Franck - Condon principle.	2]	
(c)	The absorbance of an aqueous solution of	f a	
	substance X at 600nm is found to be 0.4		
•	Calculate the molar absorption coefficient if		
	concentration is 1 × 10 ⁻⁴ M. What will be t transmittance of 7.5 × 10 ⁻⁵ M solution of the		
		3]	
(d)	KMnO ₄ and K ₂ Cr ₂ O ₇ are intensely colour		
	though there is no possibility of d-d transition		
	them. Explain.	[3]	

(3)

[P.T.O.]

4.

CHE-10

- 5. (a) Name the reference standard used in NMR spectroscopy. Give reasons for its choice. [3]
 - (b) Draw and explain the ¹H-NMR spectrum of CH₃CH₂OH. [4]
 - (c) Discuss the sample handling techniques for gases and solids for study in the IR region. [3]
- 6. (a) Explain the origin of peaks at m/z 114, 85, 71, 57 in the mass spectrum of n- octane. [3]
 - (b) Predict the number of components and their intensities in the ESR spectrum of ${}^{\bullet}C_{_{6}}H_{_{6}}^{-}$. Draw its ESR spectrum. [4]
 - (c) The specimen of ZnO shows a strong ESR line at frequency of 9.45 GHz. Calculate the **g** value of the line. [3]
- 7. (a) What is McLafferty rearrangement? Explain using a suitable example. [3]
 - (b) Give the expression for Boltzmann distribution and explain the physical significance of the terms appearing in it. [2]

(c) A compound having molecular formula C₄H₈O shows the following spectral data: [5]

Mass spectrum, (m/z): 72, 57, 43

IR spectrum (cm⁻¹): 2941 -2857, 1716, 1460

UV spectrum, λ_{max} : 274nm

¹H-NMR spectrum, (δ ,CD C ℓ_3): 1.0 (t, 3H), 2.20 (s, 3H), 2.47 (q, 2H).

Arrive at the structure of this compound using the above spectral data and explain the spectral data.

विज्ञान स्नातक (बी.एससी.)

सत्रांत परीक्षा, 2019

रसायन विज्ञान

सी.एच.ई.-10 : स्पेक्ट्रमिकी

समय : 2 घण्टे

अधिकतम अंक : 50

नोट : किन्हीं पाँच प्रश्नों के उत्तर दीजिए। सभी प्रश्नों के अंक समान हैं। लॉग सारिणयों तथा अप्रोग्रामीय वैज्ञानिक कैलकुलेटरों के प्रयोग करने की अनुमित है।

 $\beta_e = 9.274 \times 10^{-24} \text{ JT}^{-1}$; **h** = $6.626 \times 10^{-34} \text{ Js}$; **c** = $2.998 \times 10^8 \text{ ms}^{-1}$; **e** = $1.6 \times 10^{-19} \text{C}$

- (क) कार्बन की संभावित स्पेक्ट्रमी अवस्थाओं के लिए पद-प्रतीक व्युत्पन्न कीजिए।
 - (ख) एथेन के अंतरित संरूपण में S₆ व्यामिश्र सममिति अक्ष होता है। इसमें निहित संक्रियाओं को चित्र द्वारा समझाइए।[3]
 - (ग) तरंगदैर्घ्य, $\lambda = 460$ nm वाले विकिरण की जूल मात्रकों में ऊर्जा परिकलित कीजिए। [2]

- 2. (क) ¹²C ¹⁶O और ¹³C ¹⁶O के घूर्णन स्थिरांक क्रमशः 1.92118 cm⁻¹ और 1.83669 cm⁻¹ हैं। यदि ¹²C और ¹⁶O के परमाणु द्रव्यमान क्रमशः 12 और 15.9994 हों, तो ¹³C का परमाणु द्रव्यमान परिकलित कीजिए। [3]
 - (ख) निम्नलिखित के लिए कारण बताइए: [3]
 - (i) ऐसिल क्लोराइडों में >C=0 समूह आवृत्ति, ऐल्किल एस्टरों की >C=0 समूह आवृत्ति, से अधिक होती है।
 - (ii) मेथिल ऐसीटेट में >C=0 समूह आवृत्ति, फ़ेनिल ऐसीटेट की >C=0 समूह आवृत्ति से कम होती है।
 - (ग) वी.एस.इ.पी.आर. सिद्धांत के उपयोग द्वारा PCI, के आकार का अनुमान लगाइए। इसकी संरचना भी आरेखित कीजिए।
 - 3. (क) HCI अणु अवरक्त स्पेक्ट्रम में 2890 cm⁻¹ पर अवशोषण प्रदर्शित करता है। इसके लिए बल-नियतांक और v = 3 के लिए अधिकतम विस्थापन परिकलित कीजिए। यह दिया गया है कि H और cℓ के परमाणु द्रव्यमान क्रमशः 1 × 10⁻³ kg और 35.5 × 10⁻³ kg हैं।
 - (ख) CO2 के अवरक्त स्पेक्ट्रम में 2349 और 667 cm-1 पर

[P.T.O.]

पाए जाने वाले दो शिखर उसके रोमन स्पेक्ट्रम में अनुपस्थित होते हैं जबिक अवरक्त स्पेक्ट्रम में अनुपस्थित 1340 cm-1 वाला शिखर रमन स्पेक्ट्रम में सिक्रय होता है। कंपन की संगत विधाओं को बताते हुए इन शिखरों की व्याख्या कीजिए।

- (ग) स्टोक्स और प्रतिस्टोक्स रेखाएँ क्या होती हैं ? सामान्यतया प्रतिस्टोक्स रेखाओं की अपेक्षा स्टोक्स रेखाओं की तीव्रता अधिक क्यों होती है ?
- 4. (क) निम्निलिखित स्पेक्ट्रमी तकनीकों के लिए प्रयुक्त स्रोतों के नाम बताइए : [2]
 - (i) सूक्ष्म तरंग
 - (ii) अवरक्त
 - (iii) रमन
 - (iv) परावैंगनी
 - (ख) फ्रांक-कॉन्डन सिद्धांत लिखिए। [2]
 - (ग) किसी पदार्थ X के जलीय विलयन का 600nm पर अवशोषणांक 0.45 प्राप्त होता है। यदि इसकी सांद्रता 1 × 10⁻⁴ M हो, तो मोलर अवशोषण स्थिरांक परिकलित

कीजिए। इस पदार्थ के 7.5 × 10 ⁻⁵ M विलयन	की पारगम्यता
क्या होगी ? पथ-लंबाई <i>I</i> = 1cm है।	

- (घ) $KMnO_4$ और $K_2Cr_2O_7$ गहरे रंग वाले यौगिक होते हैं यद्यपि उनमें \mathbf{d} - \mathbf{d} संक्रमण की संभावना नहीं है। व्याख्या कीजिए। [3]
- 5. (क) एन.एम.आर. स्पेक्ट्रमिकी में प्रयुक्त संदर्भ मानक का नाम बताइए। इसके चयन के लिए कारण भी दीजिए। [3]
 - (ख) CH₃CH₂OH के ¹H-एन.एम.आर. स्पेक्ट्रम को आरेखित कीजिए और उसकी व्याख्या कीजिए। [4]
 - (ग) अवरक्त क्षेत्र में अध्ययन के लिए गैसों और ठोसों के लिए प्रतिदर्श हस्तन तकनीकों की चर्चा कीजिए। [3]
- (क) n-आक्टेन के द्रव्यमान स्पेक्ट्रम में m/z 114, 85, 71,
 और 57 पर प्रदर्शित शिखरों की उत्पत्ति की व्याख्या कीजिए।
 - (ख) •C,H, के इ.एस.आर. स्पेक्ट्रम में घटकों की संख्या और उनकी तीव्रताओं की प्रागुक्ति कीजिए। इसके इ.एस. आर. स्पेक्ट्रम को भी आरेखित कीजिए। [4]
 - (ग) ZnO का एक प्रतिदर्श 9.45 GHz आवृत्ति पर प्रबल इ. एस.आर. रेखा प्रदर्शित करता है। इस रेखा का g मान परिकलित कीजिए।

CHE-10 (9)

[P.T.O.]

- (क) मैकलाफर्टी पुनर्विन्यास क्या होता है ? उचित उदाहरण द्वारा व्याख्या कीजिए।
 [3]
 - (ख) बोल्ट्समान वितरण का व्यंजक लिखिए और उसमें आने
 वाले पदों की भौतिक सार्थकता की व्याख्या कीजिए। [2]
 - (ग) एक यौगिक जिसका C₄H₄O अणु सूत्र है, निम्नलिखित स्पेक्ट्रमी आंकड़े प्रदर्शित करता है : [5]

द्रव्यमान स्पेक्ट्रम (**m/z**) : 72, 57, 43

अवरक्त स्पेक्ट्रम (cm⁻¹): 2941 -2857, 1716, 1460

पराबैंगनी स्पेक्ट्रम, $\lambda_{ ext{max}}$: 274nm

 1 H-एन.एम.आर. स्पेक्ट्रम, (δ ,CDC ℓ_{3}) : 1.0 (त्रिक, 3H), 2.20 (एकक, 3H), 2.47 (चतुष्क, 2H).

इन स्पेक्ट्रमी आँकड़ों के आधार पर इस यौगिक की संरचना निर्धारित कीजिए और एपेक्ट्रमी आंकड़ों की व्याख्या कीजिए।