No. of Printed Pages : 3

BIMEE-004

B.Tech. – VIEP – MECHANICAL ENGINEERING (BTMEVI)

Term-End Examination

00651

June, 2019

BIMEE-004 : OPTIMIZATION TECHNIQUES IN ENGINEERING

Time : 3 hours

Maximum Marks: 70

Note: Answer any five questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. A manufacturer has two products I and II, both of which are made in two shops by machines A and B. The machines A and B have available time of 100 hours and 80 hours respectively. The process time per 100 for two products on two machines are :

Product	Machine A	Machine B	
Ι	04 hours	05 hours	
II	05 hours	02 hours	

The profit on product I is \gtrless 10 per 100 units and on product II is \gtrless 5 per 100 units.

How much of each product is to be made to maximize the profit?

14

7

7

- 2. (a) With the help of an example, explain multi-variable optimization.
 - (b) Explain in detail about Branch and Bound approach with suitable example.

1

BIMEE-004

P.T.O.

3. Using stepping stone method, find the optimal solution for the following transportation problem :

To	D	Е	F	Capacity
Α	5	10	2	100
В	3	7	5	25
C	6	8	4	75
Requirement	80	30	90	

14

7

7

4. (a) Solve the game whose pay-off matrix is given below :

Also determine the game value.

(b) Use dynamic programming to find the shortest path from city A to city G of the following route network. (Distance between the cities are given in miles.)

BIMEE-004

2

5. (a) Use Newton-Raphson method to find out the roots of the following equation :

 $\mathbf{x}^3 - 3\mathbf{x} - 5 = 0$

(b) Evaluate

$$\int_{0}^{6} \frac{1}{1+x^2} \,\mathrm{d}x$$

by using Trapezoidal rule.

- 6. (a) Find the dimensions of a box of largest volume that can be inscribed in a sphere of unit radius.
 - (b) Using a suitable example, explain the direct search method for optimizing multi-variable function with equality constraint.
- 7. Write short notes on any *two* of the following: $2 \times 7 = 14$
 - (a) Wolfe's Modified Simplex Method
 - (b) Integer Programming
 - (c) Cutting Plane Method

BIMEE-004

700

7

7

7

7

3