B.Tech. - VIEP - MECHANICAL ENGINEERING (BTMEVI)

Term-End Examination

DIGE1

June, 2019

BIMEE-004 : OPTIMIZATION TECHNIQUES IN ENGINEERING

Time: 3 hours
Maximum Marks : 70
Note: Answer any five questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. A manufacturer has two products I and II, both of which are made in two shops by machines A and B. The machines A and B have available time of 100 hours and 80 hours respectively. The process time per 100 for two products on two machines are :

Product	Machine A	Machine B
I	04 hours	05 hours
II	05 hours	02 hours

The profit on product I is $₹ 10$ per 100 units and on product II is ₹ 5 per 100 units.
How much of each product is to be made to maximize the profit?
2. (a) With the help of an example, explain multi-variable optimization.
(b) Explain in detail about Branch and Bound approach with suitable example.
3. Using stepping stone method, find the optimal solution for the following transportation problem :

From	D	E	F	Capacity
A	5	10	2	100
B	3	7	5	25
C	6	8	4	75
Requirement	80	30	90	

4. (a) Solve the game whose pay-off matrix is given below :

Player B
Player A

5	2
3	4

Also determine the game value.
(b) Use dynamic programming to find the shortest path from city A to city G of the following route network. (Distance between the cities are given in miles.)

5. (a) Use Newton-Raphson method to find out the roots of the following equation :

$$
x^{3}-3 x-5=0
$$

(b) Evaluate

$$
\int_{0}^{6} \frac{1}{1+x^{2}} d x
$$

by using Trapezoidal rule. 7
6. (a) Find the dimensions of a box of largest volume that can be inscribed in a sphere of unit radius.
(b) Using a suitable example, explain the direct search method for optimizing multi-variable function with equality constraint.
7. Write short notes on any two of the following : $2 \times 7=14$
(a) Wolfe's Modified Simplex Method
(b) Integer Programming
(c) Cutting Plane Method

