No. of Printed Pages: 4

BIME-034

B.Tech. – VIEP – MECHANICAL ENGINEERING (BTMEVI)

nnest Term-End Examination

June, 2019

BIME-034 : HEAT AND MASS TRANSFER

Time : 3 hours

Maximum Marks: 70

- Note: Attempt any seven questions. All questions carry equal marks. Use of scientific calculator is permitted. Assume missing data suitably, if any.
- (a) What is critical thickness of insulation for a cylinder ? Derive an expression for the same.
 - (b) Sun emits maximum radiation at wavelength of $\lambda = 0.52$ micron. Assuming sun as a black body, find the surface temperature of the sun and emissive power at that temperature. 5+5

BIME-034

P.T.O.

- 2. (a) Insulation boards are made up of three layers of materials of conductivities k_1 , k_2 and k_3 of thickness x_1 , x_2 and x_3 respectively. They are bolted together by metal bolts of cross-section area A_1 m² per m² of board area. Metal conductivity is k_4 . If temperatures on either side of board are t_1 and t_4 , determine an expression to find the heat flow per m² of area of board.
 - (b) Distinguish between laminar and turbulent
 flow with the help of a suitable example. 5+5
- 3. (a) Define Reynolds, Nusselt, Prandtl and Stanton numbers. Explain their importance in convective heat transfer.
 - (b) Prove that the shape factor of hemi-spherical bowl of diameter D with respect to itself is 0.5.
- 4. (a) Explain the concept of black body and grey body in radiation terminology.
 - (b) Define absorptivity, reflectivity and transmissivity. 5+5

BIME-034

- 5. (a) Define Fick's first and second law of diffusion. Describe the various mechanisms of mass transfer.
 - (b) What is convective mass transfer coefficient and what are its units ? Also explain the physical significance. 5+5
- 6. (a) What is condensation ? Explain in brief the dropwise condensation.
 - (b) The thermal conductivity k, the density ρ, and the specific heat C of steel are 61 W/(mK), 7865 kg/m³, and 0.46 kJ/kg K, respectively. Calculate the thermal diffusivity of the material. 5+5
- 7. (a) Prove that the thermal resistance offered by a hollow long cylinder of constant thermal conductivity is given by

$$\mathbf{R}_{cyl} = \frac{ln\left(\frac{\mathbf{r}_2}{\mathbf{r}_1}\right)}{2\pi \mathbf{L} \mathbf{K}} \,.$$

(b) Discuss overall heat transfer coefficient.
 Obtain an expression for overall heat transfer coefficient based on inner diameter of a hollow cylinder.

BIME-034

P.T.O.

- 8. (a) What are the different modes of mass transfer ? Give examples of industrial applications where mass transfer takes place.
 - (b) (i) What is heat exchangers ? Where are they used ?
 - (ii) What do you mean by fouling factor ?State the causes of fouling. 5+5

BIME-034