No. of Printed Pages : 4

## B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

**Term-End Examination** 

00535

## June, 2019

## BIEEE-007 : COMPUTER APPLICATIONS IN POWER SYSTEMS

Maximum Marks : 70

Time : 3 hours

- **Note :** Attempt any **five** questions. Each question carries equal marks. Use of scientific calculator is permitted.
  - 1. (a) What are the different steps required to apply the digital computers for the solution of power system problems ? Explain it.
    - (b) What is meant by restructuring and deregulation of power system ?

BIEEE-007

P.T.O.

7

2. For the power system network shown in Figure 1, the primitive impedances are as follows:

| Element<br>Number | Bus Number |    | Primitive |
|-------------------|------------|----|-----------|
|                   | From       | То | Impedance |
| 1                 | 1          | 0  | 0.05      |
| 2                 | 3          | 0  | 0.10      |
| 3                 | 1          | 2  | 0.50      |
| 4                 | 2          | 3  | 0.40      |
| 5                 | 1          | 3  | 0.40      |

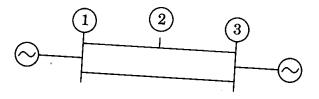



Figure 1

- (a) Draw the oriented connected graph of the network.
- (b) Compute the Y<sub>BUS</sub> matrix by considering mutual coupling of 0.2 between elements 4 and 5.

14

3. Explain the 'Newton Raphson Method' for load flow studies.

BIEEE-007

- (a) Explain optimal load scheduling.
  - (b) Prove that all the thermal power plants must operate at equal incremental cost for optimal operation.

8

5. Consider three generating units of a thermal power plant with the following specifications :

| Generator<br>unit | P <sub>i</sub><br>(max) | P <sub>i</sub><br>(min) | I/O curve                                                  |
|-------------------|-------------------------|-------------------------|------------------------------------------------------------|
| 1                 | 600 MW                  | 150 MW                  | $H_1 (MBtu/hr) = 510 +$<br>$7 \cdot 2 P_1 + 0.00142 P_1^2$ |
| 2                 | 400 MW                  | 100 MW                  | $H_2 (MBtu/hr) = 310 +$<br>7.85 $P_2 + 0.00194 P_2^2$      |
| 3                 | 200 MW                  | 50 MW                   | $H_3 (MBtu/hr) = 78 +$<br>7.97 $P_3 + 0.00482 P_3^2$       |

where  $P_i$  is the electrical power generated by each unit.

Determine the economic operating point when delivering a total load of 850 MW. Let the fuel costs be:

Unit 1 : 1·1 ₹/MBtu

Unit 2 : 1.0 ₹/MBtu

Unit 3 : 1.0 ₹/MBtu

BIEEE-007

3

P.T.O.

14

- 6. Write short notes on any two on
  - (a) Transmission and Distribution System.
  - (b) Bus Admittance Matrix Formulation (Consider suitable example)
  - (c) Demand Side Management
- 7. (a) Explain contigency analysis in power system operation.
  - (b) Explain economic load scheduling of hydrothermal plants. 7

4

Þ