B.Tech. - VIEP-ELECTRONICSAND COMMUNICATIONENGINEERING

(BTECVI)
Term-End Examination, 2019

BIELE-010 : SIGNAL COMPRESSION

Time: 3 Hours]

[Maximum Marks : 70

Note : Attempt any seven questions. All questions carry equal marks. Use of scientific calculator is permitted. Missing data, may be suitably assumed.

1. (a) Explain Extended Huffman coding with suitable example.
(b) Explain Adaptive Huffman coding with suitable example.
2. Perform the Arithmetic coding for a message "e a i i ! !". If a source that generate symbols $\{a, e, i, o, u,!\}$ with the probability model $P(a)=0.2, P(e)=0.3, P(i)=0.1$, $P(0)=0.1, P(u)=0.2, P(!)=0.1$.
3. Compare the average information (in Bits/symbol) content of given message if coded through :
(a) Huffman Code
(b) Tunstall Code

Message is "a abccc".
If memoryless source emits the symbols $\{a, b, c\}$ with following probabilities.

$$
P(a)=0.5
$$

$P(b)=0.25$
$P(c)=0.25$
4. (a) Explain Lempel Ziv-78 (LZ 78) algorithm with suitable example.
(b) Explain Dynamic Markov compression with suitable example.
5. Prove that the Rate distortion function for memoryless Gaussian source with a variance σ^{2} is:
$\mathrm{R}(\mathrm{D}) \begin{cases}\frac{1}{2} \log _{2} \frac{\sigma^{2}}{D} & 0 \leq D \leq \sigma^{2} \\ 0 & D>\sigma^{2}\end{cases}$
6. In source coding theorem context, Prove that " For any block code with block length n and coding rate less than $H(X)-\xi$, where $\xi>0$ does not change with n, then $P_{e} \rightarrow 1$ as $n \rightarrow \infty$.
7. (a) Explain Linde Buzo Gray Algorithm with suitable example.
(b) Explain Tree Structured vector Quantizers with suitable example.
8. (a) Write limitations of Discrete Cosine Transform.[5]
(b) Enlist the advantages of Discrete Cosine Transform (DCT) over the Discrete Fourier Transform (DFT).

9: Explain Walsh Hadamard Transform with suitable example.
10. Write short notes on any two of the following : $[2 \times 5=10$]
(a) Golomb Codes
(b) Lattice Vector Quantizers
(c) Karhunen Loeve Transform

