B．Tech．CIVIL ENGINEERING（BTCLEVI）

ロロら25 Term－End Examination
 June， 2019

BICEE－004 ：STRUCTURAL OPTIMIZATION

Time ： 3 hours

Maximum Marks ： 70
Note：Answer any seven questions．All questions carry equal marks．Use of scientific calculator is permitted．Assume missing data suitably，if any．

1．（a）Differentiate between Design variable and Pre－assigned variable．
（b）Find the maximum value of

$$
\mathrm{z}=2 \mathrm{x}_{1}+3 \mathrm{x}_{2}
$$

subject to

$$
\begin{aligned}
& x_{1}+x_{2} \leq 30 \\
& x_{2} \geq 3 \\
& x_{2} \leq 12, \\
& x_{1}-x_{2} \geq 0 \\
& 0 \leq x_{1} \leq 20 . \\
& 1
\end{aligned}
$$

2. (a) A plant manufactures two products, A and B. The profit contribution of each product has been estimated as ₹ 20 for product A and ₹ 24 for product B. Each product passes through three departments of the plant. The time required for each product and total time available in each department are as follows :

Department	Hours required		Available hours during
	Product A	Product B	the month
1	2	3	1500
2	3	2	1500
3	1	1	600

The company has a contract to supply at least 250 units of product B per month. Formulate the problem as a Linear Programming Model.
(b) Differentiate between constrained and unconstrained optimization problems. $5+5$
3. Solve the following LPP using Dynamic Programming method :

$$
\begin{array}{ll}
\text { Maximize } & \mathrm{z}=35 \mathrm{x}_{1}+25 \mathrm{x}_{2} \\
\text { subject to } & 4 \mathrm{x}_{1}+8 \mathrm{x}_{2} \leq 24 \\
& 15 \mathrm{x}_{1}+5 \mathrm{x}_{2} \leq 40 \\
& \mathrm{x}_{1}, \mathrm{x}_{2} \geq 0
\end{array}
$$

4. (a) Apply graphical method to solve the LPP. Maximize $\quad \mathrm{z}=\mathrm{x}_{1}-2 \mathrm{x}_{2}$ subject to $-x_{1}+x_{2} \leq 1$

$$
6 x_{1}+4 x_{2} \geq 24
$$

$$
0 \leq x_{1} \leq 5 ; 2 \leq x_{2} \leq 4
$$

(b) State the limitations of Fibonacci method. $5+5$
5. (a) Describe the distinction between a local minimum and a local maximum in unconstrained optimization problem.
(b) The total profit (in . ₹) of a beam manufacturing firm (of standard length) from manufacturing and sale of a particular number of beams is given by

$$
y=-\frac{x^{2}}{400}+2 x-80
$$

where y is the total profit (in ₹) and x is the number of beams.
What is the profit per beam when a number of beams are sold to set maximum profit? $\quad 5+5$
6. Solve the following LPP by the method of dynamic programming :

Maximize $\mathrm{z}=2 \mathrm{x}_{1}+5 \mathrm{x}_{2}$
subject to $2 \mathrm{x}_{1}+\mathrm{x}_{2} \leq 430$
$2 \mathrm{x}_{2} \leq 460$

$$
\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0 .
$$

7. (a) What is the need of dynamic programming, and how is it different from linear programming ? State some applications of dynamic programming.
(b) Use the method of Lagrangian multipliers to solve the following non-linear programming problem. Does the solution maximize or minimize the objective function?

Optimize:
$\mathrm{z}=2 \mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}+3 \mathrm{x}_{3}^{2}+10 \mathrm{x}_{1}+8 \mathrm{x}_{2}+6 \mathrm{x}_{3}-100$
subject to

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=20 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

8. (a) Briefly explain the reasons behind the use of partial derivatives while optimizing a multivariable function.
(b) What do you understand by "Interpolation Method" in multi-variable optimization technique? $5+5$
9. (a) What do you understand by a design space in optimization problem?
(b) Express the mathematical form of Quadratic programming problem.
$5+5$
10. Write short notes on any two of the following : $5+5$
(a) Unimodal Function
(b) Cubic Interpolation Methods
(c) Grid Search Method
(d) Design Constraints in the Construction of Water Dam
