B.Tech. - VIEP - MECHANICAL ENGINEERING / B.Tech. CIVIL ENGINEERING (BTMEVI / BTCLEVI)

Term-End Examination

$\square \square 53$
June, 2019

BICE-027 : MATHEMATICS-III

Time : 3 hours
Maximum Marks : 70
Note: Attempt any two parts from each question. Use of scientific calculator is permitted. All questions carry equal marks.

1. (a) Obtain the Fourier series for the function $f(x)=x^{2},-\pi \leq x \leq \pi$. Hence show that

$$
\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\ldots=\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

(b) Obtain Fourier series for

$$
f(x)=\left\{\begin{array}{ll}
\pi x, & 0 \leq x \leq 1 \\
\pi(2-x), & 1 \leq x \leq 2
\end{array} .\right.
$$

(c) Expand $f(x)=x$ as a half range sine series in $0<x<2$.
$2 \times 7=14$
2. (a) Solve the partial differential equation : $\left(y^{2}+z^{2}\right) p-x y q=-z x$
(b) Solve the linear partial differential equation :

$$
\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=\cos m x \cos n y
$$

(c) Solve the partial differential equation :

$$
\left(\mathrm{D}^{2}-\mathrm{D}^{\prime 2}-3 \mathrm{D}+3 \mathrm{D}^{\prime}\right) \mathrm{z}=\mathrm{xy}+\mathrm{e}^{\mathrm{x}+2 \mathrm{y}} \quad 2 \times 7=14
$$

3. (a) Solve the P.D.E. by separation of variable method :

$$
\begin{aligned}
& u_{\mathrm{xx}}=\mathrm{u}_{\mathrm{y}}+2 \mathrm{u}, \mathrm{u}(0, \mathrm{y})=0, \\
& \frac{\partial}{\partial \mathrm{x}} \mathbf{u}(0, \mathrm{y})=1+\mathrm{e}^{-3 \mathrm{y}}
\end{aligned}
$$

(b) A tightly stretched flexible string has its ends fixed at $\mathrm{x}=0$ and $\mathrm{x}=l$. At time $\mathrm{t}=0$, the string is given a shape defined by $\mathrm{F}(\mathrm{x})=\mu \mathrm{x}(l-\mathrm{x}), \mu$ is a constant and then released. Find the displacement $y(x, t)$ of any point k of the string at any time $\mathrm{t}>0$.
(c) The temperature distribution in a bar of length π, which is perfectly insulated at ends $x=0$ and $x=\pi$ is governed by the partial differential equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}
$$

Assuming the initial temperature distribution as $\mathrm{u}(\mathrm{x}, 0)=\mathrm{f}(\mathrm{x})=\cos 2 \mathrm{x}$, find the temperature distribution at any instant of time.
4. (a) An infinitely long plane uniform plate is bounded by two parallel edges and an end at right angles to them. The breadth is π. This end is maintained at temperature u_{0} at all points and the other edges are at zero temperature. Determine the temperature at any point of the plate in the steady state.
(b) The diameter of a semi-circular plate of radius ' a ' is kept at $0^{\circ} \mathrm{C}$ and the temperature at the semi-circular boundary is $\mathrm{T}^{\circ} \mathrm{C}$. Show that the steady state temperature in the plate is given by

$$
u(r, \theta)=\frac{4 T}{\pi} \sum_{n=1}^{\infty} \frac{1}{2 n-1}\left(\frac{r}{a}\right)^{2 n-1} \sin (2 n-1) \theta
$$

(c) Use the method of separation of variables to solve the equation

$$
\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u, \text { given that } u(x, 0)=6 e^{-3 x} .
$$

$$
2 \times 7=14
$$

5. (a) Find the Fourier transform of

$$
F(t)= \begin{cases}t, & \text { for }|t|<a \\ 0, & \text { for }|t|>a\end{cases}
$$

(b) Find the Fourier cosine transform of $\frac{1}{1+x^{2}}$ and hence find Fourier sine transform of $\frac{x}{1+x^{2}}$.
(c) Find the Fourier sine transform of $\mathrm{e}^{-|x|}$.

$$
\text { Hence evaluate } \int_{0}^{\infty} \frac{x \sin m x}{1+x^{2}} d x . \quad 2 \times 7=14
$$

