DIPLOMA IN CIVIL ENGINEERING (DCLE(G)) / DIPLOMA IN MECHANICAL ENGINEERING (DME) / DCLEVI / DMEVI / DELVI / DECVI / DCSVI ACCLEVI / ACMEVI / ACELVI / ACECVI / ACCSVI

DIGS2 Term-End Examination

June, 2019

BET-021 : MATHEMATICS - II

Time: 2 hours
Maximum Marks : 70

Note: Question no. 1 is compulsory. Attempt any four questions out of the remaining. Use of scientific calculator is permitted.

1. Answer any seven out of the following :
(a) Evaluate $A B$ where $A=\left[\begin{array}{lll}1 & 1 & 2 \\ 2 & 1 & 0\end{array}\right]$ and

$$
B=\left[\begin{array}{cc}
1 & 2 \\
2 & 0 \\
-1 & 1
\end{array}\right] ; \text { also find }(A B)^{T}
$$

(b) If $\mathrm{y}=\mathrm{e}^{\mathrm{mx}}$, then find $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}}$.
(c) Evaluate :

$$
\int \frac{\sin ^{2} x}{\cos ^{4} x} d x
$$

(d) If $Q_{3}=25.75$ and $Q_{1}=17.71$, then find Quartile Deviation.
(e) Find the mean and standard deviation of the following numbers :

$$
1,2,3,4,5,6,7
$$

(f) Find $|z|$ where $z=\frac{5-i}{2-3 i}$
(g) Evaluate :

$$
\int \sec ^{4} x d x
$$

(h) Evaluate :

$$
\operatorname{Lt}_{x \rightarrow 0} \frac{\sin ^{-1} x}{x}
$$

(i) Find the equation of the normal to the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$ at $(0,0)$.
(j) A function $f(x)$ is defined as

$$
\begin{aligned}
f(x) & =x^{2} & & \text { when } x<1 \\
& =2 \cdot 5 & & \text { when } x=1 \\
& =x^{2}+2 & & \text { when } x>1
\end{aligned}
$$

Examine if Lt $f(x)$ exists. $\mathrm{x} \rightarrow 1$
2. (a) Using matrices A;B and C

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 2 & 1
\end{array}\right] ; B=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
1 & 1 & 1
\end{array}\right] ; \\
& C=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right],
\end{aligned}
$$

verify the rule : $(A B) C=A(B C)$.
(b) Evaluate the following determinant :

$$
\left|\begin{array}{ccc}
1 & \mathrm{a} & \mathrm{bc} \\
1 & \mathrm{~b} & \mathrm{ca} \\
1 & \mathrm{c} & \mathrm{ab}
\end{array}\right| \quad \text {, } 2 \times 7=14
$$

3. (a) The function $f(x)=\frac{x^{2}-16}{x-4}$ is undefined at $x=4$. What value must be assigned to $f(x)$ so as to be continuous at $\mathrm{x}=4$?
(b) Evaluate : $\lim _{x \rightarrow 3} \frac{3-\sqrt{6+x}}{\sqrt{3}-\sqrt{6-x}}$

$$
7+7=14
$$

4. (a) Find $\frac{d y}{d x}$, where $y=2 x^{4}-\frac{4}{\sqrt[4]{x^{3}}}+\frac{3 x^{2}}{\sqrt[3]{x}}-5$.
(b) Find $\frac{d y}{d x}$, where $y=\frac{1}{1+x^{b-a}+x^{c-a}}+$

$$
\frac{1}{1+x^{a-b}+x^{c-b}}+\frac{1}{1+x^{a-c}+x^{b-c}} .
$$

(c) If $y=\sqrt{x}+\frac{1}{\sqrt{x}}$, then prove that $2 x \cdot \frac{d y}{d x}+y=2 \sqrt{x}$. $5+4+5=14$
5. (a) Evaluate :

$$
\int \sqrt{1-\mathrm{x}^{2}} \mathrm{dx}
$$

(b) Evaluate the integral :

$$
\int_{0}^{2} \frac{\sqrt{x} d x}{\sqrt{x}+\sqrt{2-x}}
$$

$$
2 \times 7=14
$$

6. (a) Compute the arithmetic mean and median of the following data :

Income (₹ ${ }^{\prime} 000$)	No. of Persons
Under 1	13
$1-2$	90
$2-3$	81
$3-5$	117
$5-10$	66
$10-25$	27
$25-50$	6
$50-100$	2
$100-1000$	2

(b) Calculate the mean and standard deviation of the following data :

Grades	Frequency
$30-39$	2
$40-49$	3
$50-59$	11
$60-69$	20
$70-79$	32
$80-89$	25
$90-99$	7

$$
2 \times 7=14
$$

7. (a) Find the area enclosed between the curve $y^{2}=x^{2}\left(4-x^{2}\right)$, the co-ordinate axes and the ordinate $x=2$.
(b) A particle moving in a straight line has a velocity $\mathrm{v} \mathrm{cm} / \mathrm{sec}$ at time t sec where $\mathrm{v}=5-4 \mathrm{t}+3 \mathrm{t}^{2}$. Find its displacement at 3 sec and the acceleration at that time.

$$
2 \times 7 \doteq 14
$$

