DIPLOMA IN CIVIL ENGINEERING (DCLE(G))/DIPLOMA IN MECHANICAL ENGINEERING (DME)/DCLEVI/DMEVI/
DELVI/DECVI/DCSVI/ACCLEVI/ACMEVI/ ACELVI/ACECVI/ACCSVI

Term-End Examination
June, 2019

BET-012 : PHYSICS

Time : $\mathbf{2}$ hours
Maximuım Marks : 70
Note: (i) Question no. 1 is compulsory.
(ii) Attempt any four questions from the remaining question nos. 2 to 7.
(iii) Use of scientific calculator is permitted.

1. Choose the correct answer from the given four alternatives.
$14 \times 1=14$
(a) Venturimeter works on :
(i) Archimede's principle
(ii) Stoke's law
(iii) Bernoulli's principle
(iv) Equation of continuity
(b) The rain drop is spherical because of :
(i) Viscosity
(ii) Surface tension
(iii) Atmospheric pressure
(iv) Force of gravity
(c) Steel is:
(i) more elastic than rubber
(ii) less elastic than rubber
(iii) not elastic, but is plastic
(iv) same elastic as rubber
(d) Two bodies are said to be in thermal equilibrium when they attain equal :
(i) Temperature
(ii) Heat contents
(iii) Heat capacity
(iv) Specific heat
(e) The pressure of gas P and its Kinetic Energy K.E. are related as :
(i) $\mathrm{P}=\frac{1}{2} \mathrm{~K} \cdot \mathrm{E}$.
(ii) $\mathrm{P}=\mathrm{K} . \mathrm{E}$.
(iii) $\mathrm{P}=\frac{3}{2} \mathrm{~K} \cdot \mathrm{E}$.
(iv) $\mathrm{P}=\frac{2}{3} \mathrm{~K} . \mathrm{E}$.
(f) If a gas is at temperature T K, the root mean square speed of its molecules will be proportional to :
(i) \sqrt{T}
(ii) $\frac{1}{\sqrt{T}}$
(iii) T
(iv) T^{2}
(g) From two different musical instruments, the sound produced of same frequency and same intensity are predictable by their :
(i) loudness
(ii) pitch
(iii) quality
(iv) none of these
(h) The wave produced in a resonant air column is :
(i) stationary longitudinal wave
(ii) stationary transverse wave
(iii) transverse progressive wave
(iv) longitudinal progressive wave
(i) The magnifying power of the simple microscope is :
(i) $\mathrm{D}+\mathrm{f}$
(ii) $\mathrm{D}+\frac{1}{\mathrm{f}}$
(iii) $\frac{\mathrm{D}}{\mathrm{f}}-1$
(iv) $1+\frac{\mathrm{D}}{\mathrm{f}}$
(D is the least distance of distinct vision, f is the focal length of the lens)
(j) For total internal reflection to take place, the relationship between angle of incidence (i) and critical angle (c) should be :
(i) $i>c$
(ii) $i=\mathrm{c}$
(iii) $i<c$
(iv) none of the above
(k) Two thin lenses of focal lengths f_{1} and f_{2} are in contact and coaxial. The combination is equivalent to a single lens of power :
(i) $f_{1}+f_{2}$
(ii) $\frac{f_{1} f_{2}}{f_{1}+f_{2}}$
(iii) $1 / 2\left(f_{1}+f_{2}\right)$
(iv) $\frac{f_{1}+f_{2}}{f_{1} f_{2}}$
(l) Kirchoff's first law expresses the conservation of :
(i) Energy
(ii) Charge
(iii) Momentum
(iv) None of these
(m) Which of the following amount of charge is not possible?
(i) $1.6 \times 10^{-19} \mathrm{C}$
(ii) $4.8 \times 10^{-19} \mathrm{C}$
(iii) $8 \times 10^{-19} \mathrm{C}$
(iv) $6 \times 10^{-19} \mathrm{C}$
(n) In a paramagnetic material, magnetic susceptibility is :
(i) small and negative
(ii) large and positive
(iii) large and negative
(iv) small and positive
2. (a) Explain the cause of surface tension on the basis of cohesive forces.
(b) State and explain the Pascal's law.
(c) State and prove Bernoulli's equation.
3. (a) Explain thermal equilibrium. State the zeroth law of thermodynamics and explain the concept of temperature on its basis. $\quad \mathbf{6 + 4 + 4}$
(b) Derive an expression for the pressure exerted by an ideal gas.
(c) Calculate the average energy of an air molecule at a temperatue of 300 K . ($\mathrm{KB}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$)
4. (a) What is mirror formula ? Define magnification and explain why magnification of a convex mirror is always negative. $6+4+4$
(b) Write the difference between a longitudinal and transverse waves.
(c) Calculate the critical angle for a glass water interface if the refractive indices of glass and water are $\frac{3}{2}$ and $\frac{4}{3}$, respectively.
5. (a) Derive an expression for the drift velocity of electrons in a conductor.
(b) Calculate the electric force between two charged spheres having charges $4 \times 10^{-7} \mathrm{C}$ and $6 \times 10^{-7} \mathrm{C}$ and placed 60 cm apart in air $\left(\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{c}^{-2}\right)$
(c) Describe the working of Wheat stone bridge.
6. (a) Explain the working of a moving coil galvanometer.
(b) Distinguish between diamagnetic, paramagnetic, ferromagnetic materials.
7. Write short notes on any four of the following :
(a) Equation of continuity
$4 \times 3^{1 / 2}=14$
(b) Critical velocity
(c) Stefan's law
(d) Laws of Refraction
(e) Power of a Lens
(f) Potentiometer
