DIPLOMA IN CIVIL ENGINEERING (DCLE(G))/ DIPLOMA IN MECHANICAL ENGINEERING (DME) / DCLEVI / DMEVI / DELVI / DECVI / DCSVI / ACCLEVI / ACMEVI / ACELVI / ACECVI / ACCSVI

ロロ52 . Term-End Examination

June, 2019

BET-011 : MATHEMATICS - I

Time : 2 hours
Maximum Marks : 70
Note: Question number 1 is compulsory. Attempt any four questions out of the remaining questions. Use of scientific calculator is permitted.

1. Choose the correct answer from the given four alternatives.
(i) The value of $\left(1+\tan ^{2} 30^{\circ}\right)$ is
(a) 3
(b) $\frac{1}{3}$
(c) $\frac{1}{\sqrt{3}}$
(d) $\frac{4}{3}$
(ii) If $\sin (A-B)=\frac{1}{2}$ and $\sin A=\frac{1}{\sqrt{2}}$, then the angles A and B respectively are
(a) $15^{\circ} ; 45^{\circ}$
(b) $45^{\circ} ; 15^{\circ}$
(c) $30^{\circ} ; 60^{\circ}$
(d) $60^{\circ} ; 30^{\circ}$
(iii) What is the meaning of the following shape in a flow chart?

(a) Terminal box
(b) Input/Output box
(c) Decision box
(d) Calculation/Assignment box
(iv) The points of intersection of the parabola $y^{2}=4 x$ and the straight line $x=4$ are
(a) $(2,3),(4,4)$
(b) $(3,4),(4,4)$
(c) $(4,5),(4,4)$
(d) $(4,4),(4,-4)$
(v) The shortest distance of the point $P(1,-3)$ from the line $2 y-3 x=4$ is
(a) 13
(b) $\frac{7}{13} \sqrt{13}$
(c) $\sqrt{13}$
(d) None of the above
(vi) $\vec{A} \times \vec{B}$ is a vector
(a) perpendicular to $\overrightarrow{\mathrm{A}}$
(b) perpendicular to \vec{A} and \vec{B} both
(c) parallel to $\overrightarrow{\mathbf{A}}$
(d) parallel to $\overrightarrow{\mathbf{B}}$
(vii) $\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)$ is equal to
(a) $\frac{\pi}{4}$
(b) $-\frac{\pi}{4}$
(c) $\frac{3 \pi}{4}$
(d) None of the above
2. (a) Determine ' x ' so that 2 is the slope of the line through

$$
(2,5) \text { and }(x, 3)
$$

(b) Determine the vertex and the focus of the parabola

$$
y^{2}-4 y-4 x-8=0
$$

(c) Compute the value of x, if
$\log (7 x-13)=\log (x+1)+\log 3 . \quad 4+5+5$
3. (a) Prove that the two circles
$x^{2}+y^{2}-2 x-4 y=0$, and $x^{2}+y^{2}-8 y-4=0$ touch internally.
(b) If ${ }_{r}^{n} C+{ }_{r+1}^{n} C={ }_{x}^{n+1} C$, then find x.
(c) Find the value of $\log \frac{9}{8}-\log \frac{27}{32}+\log \frac{3}{4}$.
4. (a) If $x=a \cos \theta+b \sin \theta$, and
$y=a \sin \theta-b \cos \theta$, then prove that
$\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$.
(b) If $\sec \theta+\tan \theta=1+\sqrt{2}$, then find the value of $\sec \theta$.
(c) If $\frac{3+5+7+\ldots \text { up to } n \text { terms }}{5+8+11+\ldots \text { up to } n \text { terms }}=7$, find the value of n. $4+5+5$
5. (a) Find the projection of the vector
$2 \hat{i}+3 \hat{j}-2 \hat{k}$ on the vector $\hat{i}+2 \hat{j}-3 \hat{k}$.
(b) The vectors $\vec{A}=3 \hat{i}-\hat{k}$, and $\vec{B}=\hat{i}+2 \hat{j}$ are adjacent sides of a parallelogram. Find the area of the parallelogram.
(c) Prove that

$$
\frac{1}{\log _{\mathrm{xy}} \mathrm{xyz}}+\frac{1}{\log _{\mathrm{yz}} \mathrm{xyz}}+\frac{1}{\log _{\mathrm{zx}} \mathrm{xyz}}=2 . \quad 4+5+5
$$

6. (a) If $\frac{\sqrt{5}-1}{\sqrt{5}+1}-\frac{\sqrt{5}+1}{\sqrt{5}-1}=a+b \sqrt{5}$, find a and b. .
(b) If $\frac{\log x}{y-z}=\frac{\log y}{z-x}=\frac{\log z}{x-y}$, show that $x y z=1$.
(c) Find two geometric means between 3 and 192.
7. (a) Find the equation of a line passing through the point $(2,2)$ and sum of the intercepts on the axis is 9 .
(b) The sum of first three terms of a GP is 26 and the sum of first six terms is 728 . What is the $\mathrm{n}^{\text {th }}$ term of the geometric sequence?
(c) Find the eccentricity, foci, length of the latus rectum of the ellipse

$$
x^{2}+4 y^{2}-4 x+24 y+31=0 . \quad 4+5+5
$$

