No. of Printed Pages : 5

BET-011

DIPLOMA IN CIVIL ENGINEERING (DCLE(G))/ DIPLOMA IN MECHANICAL ENGINEERING (DME) / DCLEVI / DMEVI / DELVI / DECVI / DCSVI / ACCLEVI / ACMEVI / ACELVI / ACECVI / ACCSVI

00652

Term-End Examination

June, 2019

BET-011 : MATHEMATICS - I

Time : 2 hours

Maximum Marks : 70

- **Note :** Question number 1 is **compulsory**. Attempt any **four** questions out of the remaining questions. Use of scientific calculator is permitted.
- 1. Choose the correct answer from the given four alternatives. $7 \times 2=14$
 - (i) The value of $(1 + \tan^2 30^\circ)$ is
 - (a) 3 (b) $\frac{1}{3}$ (c) $\frac{1}{\sqrt{3}}$ (d) $\frac{4}{3}$

BET-011

P.T.O.

(ii) If
$$\sin (A - B) = \frac{1}{2}$$
 and $\sin A = \frac{1}{\sqrt{2}}$, then the

angles A and B respectively are

- (a) 15°; 45°
- (b) 45°; 15°
- (c) $30^{\circ}; 60^{\circ}$
- (d) 60°; 30°
- (iii) What is the meaning of the following shape in a flow chart ?

- (a) Terminal box
- (b) Input/Output box
- (c) Decision box
- (d) Calculation/Assignment box
- (iv) The points of intersection of the parabola $y^2 = 4x$ and the straight line x = 4 are
 - (a) (2, 3), (4, 4)
 - (b) (3, 4), (4, 4)
 - (c) (4, 5), (4, 4)
 - (d) (4, 4), (4, -4)

BET-011

2

(v)

The shortest distance of the point P (1, -3)

from the line 2y - 3x = 4 is

- (a) 13
- (b) $\frac{7}{13}\sqrt{13}$
- (c) $\sqrt{13}$
- (d) None of the above

(vi)
$$\overrightarrow{A} \times \overrightarrow{B}$$
 is a vector
(a) perpendicular to \overrightarrow{A}
(b) perpendicular to \overrightarrow{A} and \overrightarrow{B}
(c) parallel to \overrightarrow{A}
(d) parallel to \overrightarrow{B}

both

(vii)
$$\tan^{-1}(\tan\frac{3\pi}{4})$$
 is equal to

(a)
$$\frac{\pi}{4}$$

(b) $-\frac{\pi}{4}$
(c) $\frac{3\pi}{4}$
(d) None of the above

BET-011

3

- (a) Determine 'x' so that 2 is the slope of the line through
 (2, 5) and (x, 3).
 - (b) Determine the vertex and the focus of the parabola

 $y^2 - 4y - 4x - 8 = 0.$

- (c) Compute the value of x, if $\log (7x - 13) = \log (x + 1) + \log 3.$ 4+5+5
- 3. (a) Prove that the two circles $x^2 + y^2 - 2x - 4y = 0$, and $x^2 + y^2 - 8y - 4 = 0$ touch internally.
 - (b) If ${n \choose r}C + {n \choose r+1}C = {n+1 \choose x}C$, then find x.
 - (c) Find the value of $\log \frac{9}{8} \log \frac{27}{32} + \log \frac{3}{4}$. 4+5+5
- 4. (a) If $x = a \cos \theta + b \sin \theta$, and

 $y = a \sin \theta - b \cos \theta$, then prove that $x^2 + y^2 = a^2 + b^2$.

(b) If $\sec \theta + \tan \theta = 1 + \sqrt{2}$, then find the value of $\sec \theta$.

(c) If
$$\frac{3+5+7+...\text{ up to n terms}}{5+8+11+...\text{ up to n terms}} = 7$$
, find the value of n. $4+5+5$

BET-011

5. (

(a) Find the projection of the vector

 $2\hat{i} + 3\hat{j} - 2\hat{k}$ on the vector $\hat{i} + 2\hat{j} - 3\hat{k}$.

(b) The vectors $\overrightarrow{A} = 3\hat{i} - \hat{k}$, and $\overrightarrow{B} = \hat{i} + 2\hat{j}$ are adjacent sides of a parallelogram. Find the area of the parallelogram.

$$\frac{1}{\log_{xy} xyz} + \frac{1}{\log_{yz} xyz} + \frac{1}{\log_{zx} xyz} = 2. \qquad 4+5+5$$

6. (a) If $\frac{\sqrt{5}-1}{\sqrt{5}+1} - \frac{\sqrt{5}+1}{\sqrt{5}-1} = a + b \sqrt{5}$, find a and b.

(b) If
$$\frac{\log x}{y-z} = \frac{\log y}{z-x} = \frac{\log z}{x-y}$$
, show that $xyz = 1$.

- (c) Find two geometric means between 3 and 192. 4+5+5
- (a) Find the equation of a line passing through the point (2, 2) and sum of the intercepts on the axis is 9.
 - (b) The sum of first three terms of a GP is 26 and the sum of first six terms is 728. What is the nth term of the geometric sequence ?
 - (c) Find the eccentricity, foci, length of the latus rectum of the ellipse

$$x^2 + 4y^2 - 4x + 24y + 31 = 0. \qquad 4+5+5$$

BET-011.

5