1245682

No. of Printed Pages : 5 BCE-045

DIPLOMA IN CIVIL ENGINEERING DCLE(G)/DCLEVI Term-End Examination June, 2019
 BCE-045 : CONSTRUCTION DRAWING

Time : 2 Hours

Maximum Marks : 70
Note: (i) Part A is to be attempted on answer script and Part B on drawing sheet.
(ii) Use of calculator is allowed.
(iii) Assume suitable data wherever necessary.

Part-A
Note : Attempt any five questions from the following.

1. Give the symbols for the following :
$7 \times 1=7$
(a) Wooden work
(b) Earth work
(c) Plaster
(d) Indian type W. C.
(e) Kitchen sink
(f) Ceiling fan
(g) Bell push
2. (a) Which type of drawings are required for the construction of a civil engineering structure?
(b) Describe as to how a good drawing can be prepared.
$3 \frac{1}{2}$
3. (a) Discuss architectural aspects of a staircase.
(b) Sketch a bifurcated staircase. $3 \frac{1}{2}$
4. Define an arch. What are various elements of a segmental arch ? Explain with the help of a neat sketch.
5. Design the concrete footing for a 250 mm thick wall carrying a load of $100 \mathrm{kN} / \mathrm{m}$ run (As shown in figure below).

Safe bearing capacity of soil $=110 \mathrm{kN} / \mathrm{m}^{2}$
Angle of repose $=28^{\circ}$
Unit weight of soik $=17 \mathrm{kN} / \mathrm{m}^{3}$
6. Write full form of any seven abbreviations given below : $7 \times 1=7$
(a) WRT
(b) APPROX
(c) LHS
(d) SCR
(e) SPEC
(f) ${ }^{2} \mathrm{C} / \mathrm{C}$
(g) CM
(h) DRG
(i) SYM
(j) EXT
7. What are the main types of wooden joints ? Draw a tabled joint and explain framing joints.

Part-B

Note : Attempt Question No. 8, which is compulsory and any one question from remaining, adopt suitable scale.
8. Draw to a suitable scale the longitudinal section (L-Section) and two cross sections (one
(A-52) P. T. O.
at the mid span and other near the support) of a Simply Supported RCC rectangular beam with the help of the following data :

Size of beam $=300 \mathrm{~mm} \times 600 \mathrm{~mm}$
Bearing on wall $=300 \mathrm{~mm}$
Clear span of beam $=4.50 \mathrm{~m}$
Main reinforcement $=3$ Nos. $20 \mathrm{~mm} \phi$ (one bar bent up at span/7)

Anchor bar $=2$ Nos. $12 \mathrm{~mm} \phi$ at top
Vertical stirrups $=8 \mathrm{~mm} \phi 2$ legged
(a) $200 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
9. Draw to a suitable scale Sectional plan and sectional elevation of a square column with isolated footing from the following data : 20
Size of column $=400 \mathrm{~mm} \times 400 \mathrm{~mm}$
Depth below GL $=90 \mathrm{~cm}$
Plinth level $=300 \mathrm{~mm}$ above GL
Height of column $=3.0 \mathrm{~m}$

Column reinforcement :

Main reinforcement bar $=8$ Nos $20 \mathrm{~mm} \phi$
Lateral Ties $=8 \mathrm{~mm} \phi @ 300 \mathrm{c} / \mathrm{c}$

Footing Details:
Size of footing $=2.5 \mathrm{~m} \times 2.5 \mathrm{~m}$
Thickness at column face $=\mathbf{6 0 0} \mathrm{mm}$
Thickness at free end $=300 \mathrm{~mm}$
Reinforcement $=12 \mathrm{~mm} \phi @ 200 \mathrm{~mm}$ c/c (both way)
10. A single leaf fullỳ glazed wooden door of size $1.20 \mathrm{~m} \times 2.10 \cdot \mathrm{~m}$ with two glass panels inserts is provided in a drawing room :20
(i) Draw the elevation of the door
(ii) Draw the sectional plan of the door

