| DIPLOMA IN CIVIL ENGINEERING |  |
| :---: | :---: |
| $\sim$ | DCLE(G)/DCLEVI |
| 0 | Term-End Examination |
| 0 | June, 2019 |
| 0 |  |

## BCE-041 : THEORY OF STRUCTURES - II

## Time : $\mathbf{2}$ hours

Maximum Marks : 70
Note: (i) Question no. 1 is compulsory. Attempt any other four questions.
(ii) All questions carry equal marks.
(iii) Use of scientific calculator is permitted.

1. Choose the most appropriate answers from the given alternatives in questions (a) to (g) below. $7 \times 2=14$
(a) Partial safety factor for loads for limit state of collapse is equal to :
(i) 1.5
(ii) 2.0
(iii) 1.0
(iv) 1.15
(b) The final vertical deflection due to all loads including creep, shrinkage and temperature of a member shall not be :
(i) $>\frac{\text { lef }}{350}$
(ii) $>\frac{\text { lef }}{250}$
(iii) $>\frac{\text { lef }}{150}$
(iv) 20 mm
(c) In the design of slab, the maximum diameter of reinforcing bars shall not be :
(i) $<\frac{1}{4}$ th of the thickness of the slab
(ii) $>\frac{1}{8}$ th of the thickness of the slab
(iii) $<50 \mathrm{~mm}$
(iv) $>8 \mathrm{~mm}$
(d) The cross-sectional area of longitudinal bars in a column shall not be more than :
(i) $0.8 \%$ of the gross sectional area
(ii) $1.2 \%$ of the gross sectional area
(iii) $6 \%$ of the gross sectional area
(iv) $8 \%$ of the gross sectional area
(e) At the neutral axis of a beam, the strain is :
(i) maximum
(ii) zero
(iii) not known
(iv) depends on stress
(f) The maximum strain in concrete in flexure is:
(i) $0.20 \%$
(ii) $0.35 \%$
(iii) $0.4 \%$
(iv) $0.5 \%$
(g) Minimum dia of bars as longitudinal reinforcement in a column shall be :
(i) 12 mm
(ii) 10 mm
(iii) 20 mm
(iv) 8 mm
2. Determine the shear reinforcement in form of
vertical stirrups of $\phi 6$ of a rectangular section of $\mathrm{b} \times \mathrm{d}=250 \mathrm{~mm} \times 450 \mathrm{~mm}$ reinforced with $4 \phi 20$ to resist 100 kN shear force. Use $\mathrm{M}_{25}$ concrete, Fe 415 for main reinforcement and Fe 250 for transverse reinforcement.
$\varepsilon=0.67 \mathrm{~N} / \mathrm{mm}^{2}$
3. A reinforced concrete beam of rectangular section of size $250 \times 550 \mathrm{~mm}$ overall is to be designed for a factored moment of 225 kNm . Compute the reinforcements considering effective cover of 50 mm . The concrete mix to be used is $\mathrm{M}_{20}$ and the grade of steel is Fe 415.
Take $f_{\mathrm{sc}}=351.93 \mathrm{~N} / \mathrm{mm}^{2}$ for $\mathrm{d}^{\prime} / \mathrm{d}=0.1$
4. Design longitudinal reinforcement for a circular column of dia 350 mm with helical reinforcement as traverse reinforcement of $\phi 8$ @ $45 \mathrm{c} / \mathrm{e}$ for a factored load of 1800 kN and effective length 2.75 m for the following design parameters. $f_{y}=415$ and $f_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2}$.
5. Design a strip footing for a concrete wall of 300 mm thickness carrying a load $700 \mathrm{kN} / \mathrm{m}$. Design parameters are as follows:
$p_{\mathrm{BC}}=180 \mathrm{kN} / \mathrm{m}^{2} \quad f_{\mathrm{ck}}=25 \mathrm{~N} / \mathrm{mm}^{2}$ $f_{y}^{\prime}=415 \mathrm{~N} / \mathrm{mm}^{2}$.
6. Distinguish between one way slab and two way slab. Give steps to design two way slab with details of reinforcement. Also discuss support conditions.
7. Design a staircase having cantilever steps for a 14
residential house where floor to floor height is
3.6 m and staircase size is $2.0 \mathrm{~m} \times 4.05 \mathrm{~m}$. Use
$\mathrm{M}_{20}$ concrete and Fe 415 steel.
8. (a) Discuss the steps to design cylindrical tank with flexible base resting on the ground. Draw a typical diagram of reinforcement.
(b) Discuss Limit State of Serviceability.
