1256845

No. of Printed Pages : 3 BIEE-017

B. TECH. VIEP-ELECTRICAL
 ENGINEERING (BTELVI)
 Term-End Examination
 June, 2019
 BIEE-017 : DIGITAL ELECTRONICS

Time: 3 Hours
Maximum Marks : 70
Note: Attempt any seven questions. All questions carry equal marks. Missing data, if any, may be suitably assumed. Use of scientific calculator is allowed.

1. Simplify the following using Boolean algebra :
$2 \frac{1}{2}$ each
(a) $\mathrm{AB}+\mathrm{A} \overline{\mathrm{B}} \mathrm{C}+\mathrm{B} \overline{\mathrm{C}}=\mathrm{AC}+\mathrm{B} \overline{\mathrm{C}}$
(b) $\mathrm{A} \overline{\mathrm{B}} \mathrm{C}+\mathrm{B}+\mathrm{B} \overline{\mathrm{D}}+\mathrm{AB} \overline{\mathrm{D}}+\overline{\mathrm{A}} \mathbf{C}=\mathrm{B}+\mathrm{C}$
(c) $\mathrm{A}[\mathrm{B}+\overline{\mathrm{C}}(\mathrm{AB}+\mathrm{A} \overline{\mathrm{C}})]$
(d) $(\overline{A+B \bar{C}})(A \bar{B}+A B C)$
2. "(a) Reduce the expression $f=\Sigma m(0,2,3,4$, 5,6) using mapping and implement it in NAND logic.
(b) Minimize the output function:

$$
\begin{aligned}
& f_{1}=\Sigma m(0,2,6,10,11,12,13) \\
&+d(3,4,5,14,15)
\end{aligned}
$$

and $f_{2}=\Sigma m(1,2,6,7,8,13,14,15)$

$$
+d(3,5,12)
$$

3. (a) Realize a full-subtractor using NAND gate only. 5
(b) Implement the function $\mathrm{F}(a, b, c)=a b+\bar{b} c$ using 4: 1 MUX.
4. (a) With the help of a gate level logic diagram and a truth table. Explain decimal to BCD encoder.
(b) Implement the function F with two level forms AND-NOR :
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma m(0,1,2,3,4,8,9,12)$
5. (a) For what minimum value of propagation delay in each flip-flop will a 10 bit ripple counter skip a count when it is clocked at 10 MHz .
(b) Design a synchronous 3-bit down counter using J-K flip-flop.
6. Draw and explain the architecture of 8086 microprocessor.

[3]

7. Write short notes on any two of the followings:

5 each
(i) Synchronous and Asynchronous counter
(ii) Programmable Logic Array (PLA)
(iii) Race round condition in flip-flop
8. Explain the following terms: 2 each
(i) Propagation delay time
(ii) Setup time
(iii) Power dissipation
(iv) Pulse width
(v) Hold time
9. With the help of diagrams, explain the working of 4-bit universal shift registers.
10. Explain the interrupts and flags in 8085
microprocessors.
10

