No. of Printed Pages: 3

BIEE-005

B.Tech. – VIEP – ELECTRICAL ENGINEERING (BTELVI)

00655

Term-End Examination

June, 2019

BIEE-005 : ELECTROMAGNETIC THEORY

Time : 3 hours

Maximum Marks: 70

- Note: Attempt any five questions. All questions carry equal marks. Use of scientific calculator is allowed.
- 1. (a) State and explain the Gauss divergence theorem. Write down its limitations and utilities.
 - (b) Point charges 5 nC and 2 nC are located at (2, 0, 4) and (-3, 0, 5) respectively. Determine :
 - (i) The force on 1 nC point charge located at (1, -3, 7).
 - (ii) The electric field E at (1, -3, 7).

BIEE-005

7

7

2.	(a)	What do you mean by boundary conditions ? Explain dielectric (Er_1) – dielectric (Er_2) boundary condition.	7
	(b)	State Continuity equation and Relaxation time. Derive them respectively.	7
3.	(a)	What are the methods of Image ? Also mention its limitation.	7
	(b)	Discuss cylindrical and rectangular coordinate system.	7
4.	(a)	Derive Biot-Savart's law and Ampere's law.	7
	(b)	Given the magnetic vector potential $A = -\rho^2/4 a_z$ Wb/m, calculate the total	
		magnetic flux crossing the surface	7
		$\phi = \pi/2, \ 1 \le \rho \le 2 \ m, \ 0 \le z \le 5 \ m.$	
5.	(a)	Explain Poynting vector and its applications.	7
	(b)	Explain the wave propagation in dielectric and conducting medium in a lossless non-conductor.	7
6.	(a)	In a non-magnetic medium	
	(u)	$E = 4 \sin (2\pi \times 10^{-7} t - 0.8x)a_z V/m$	
		find	7
		(i) ε _r , η	
		(ii) The total time-average power carried by the wave	
	(b)	Discuss the transmission line equation for lossless line and distortionless line.	7
		0	

.

BIEE-005

2

7. Write short notes on any *two* of the following :

2×7=14

- (a) Parallel polarization
- (b) Stokes' theorem, its limitations and utilities
- (c) Gauss's theorem and its applications

BIEE-005