No. of Printed Pages: 4

1261735

B. TECH.-VIEP-ELECTRONICS AND COMMUNICATION ENGINEERING
 (BTECVI)

Term-End Examination
 June, 2019

BIEL-019 : POWER ELECTRONICS

Time : 3 Hours

Maximum Marks : 70
Note : Attempt any seven questions. All questions carry equal marks. Use of scientific calculator is allowed. Missing data, if any, may be suitably assumed.

1. (a) Enumerate the voltage commutation techniques of SCR. Draw suitable voltage and current waveforms.
(b) Draw the switching characteristics of SCR during turn on and turn off conditions. 5
2. A single-phase full converter, connected to $230 \mathrm{~V}, 50 \mathrm{~Hz}$ source is feeding load $R=10 \Omega$ in series with large inductance that makes the load current ripple free. For a firing angle of 45°, calculate input and output parameters of this converter.
3. (a) Derive an expression for circulating current for a 3-phase dual converter in terms of supply voltage. Sketch the relevant voltage and current waveforms. 8
(b) Describe how a freewheeling diode improves power factor in a converter system.
4. (a) Explain the working of a single phase full wave midpoint phase controlled converter with RL load.
(b) SCRs with rating of 1000 V and 200 A are available to be used in string to handle 6 kV and 1 kA . Calculate the number of series and parallel units required in case derating factor is 0.1 .
5. (a) Describe the operation of a step up chopper. How can it be used for regenerative braking of DC motors. 5
(b) A current commutated chopper is fed from a dc source of 230 V . Its commutating components are $\mathrm{L}=20 \mu \mathrm{H}$ and $\mathrm{C}=50 \mu \mathrm{~F}$. If load current of 200 A is assumed constant during commutation process; then compute:
(i) Turn off time of main thyristor and auxillary thyristor.
(ii) Total commutation interval.
6. Discuss the working of 120° node conduction scheme of a three phase bridge inverter with its relevant waveforms. Also find the expression for phase and line voltages.
7. (a) In a single phase series inverter, the operating frequency is 50 kHz and the thyristor turn off time $t_{q}=10 \mu \mathrm{~s}$. Circuit parameters are $R=3 \Omega, L=60 \mu \mathrm{H}, \mathrm{C}=7.5$ $\mu \mathrm{F}$ and $\mathrm{V}_{\mathrm{S}}=220 \mathrm{~V}$ dc. Determine :
(i) The circuit turn off time.
(ii) Maximum possible operating frequency, with factor of safety $=1.5$.
(b) Discuss the closed loop control of DC drives.
8. (a) The speed of $15 \mathrm{hp}, 220 \mathrm{~V}, 1000 \mathrm{rpm} \mathrm{DC}$ series motor is controlled using a single phase, half controlled bridge converter. The combined armature and field resistance is 0.2Ω. Assume continuous ripple free motor current and speed of 1000 rpm and $k=0.03$ $\mathrm{Nm} / \mathrm{amp}^{2}$. Determine :
(i) Motor current
(ii) Motor torque for fringe angle $\alpha=30^{\circ}$, AC voltage is 250 V .
(b) What are ac drives? Give the merits and demerits of ac drive with respect to dc drives?

5
9. (a) Explain the working of static Scherbius. Drive for obtaining speed below as well as above synchronous speed.
(b) Describe static rotor resistance control method for speed control of 3 -phase induction motor.
10. Write short notes on any two of the following :
(a) Single phase PWM inverter
(b) RC Firing circuit by thyristors
(c) Power MOSFET
(d) Working of IGBT

