00665

No. of Printed Pages: 4

1

BIEL-012

[P.T.O.]

B.TECH. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination, 2019

BIEL-012 : ANALOG AND MIXED MODE VLSI DESIGN

Time : Three Hours] **Maximum Marks: 70**

Note : Answer any seven questions. All questions carry equal marks. Missing data if any may be suitably assumed. Use of scientific calculator is permitted.

1,	(a)	How analog signals are converted into digital signals? [2.5]
	(b)	What are the issues of mixed signal layout design?
	(c)	Define slew rate of OP Amp. [2.5]
	(d)	Define CMRR (Common Mode Rejection Ratio) of Op Amp. [2.5]
2.	(a)	An analog signal in the range 0 to +10V is to be converted to 8 – bit digital signal. What is the resolution of the conversion in volts ? What is
BIEL-012		(1) (PTO)

(1)

the digital representation of an input of 6v ? What is the representation of an input of 6.2v ? What is the error made in the quantization of 6.2v in absolute terms and as a percentage of the input? What is the largest possible quantization error as a percentage of full scale ? [7]

- (b) Explain the sampling process of analog signals
 and signal quantization. [3]
- (a) Explain the working principle of DAC using R-2R ladder network. [5]
 - (b) If the input bias current of an OP-Amp, used as summer in a 10-bit DAC, is to be no more than ¼ LSB, what is the maximum current required to flow in for an OP-Amp whose bias current is as great as 0.5 μA?
- 4. (a) What are the types of ADC architectures available? Explain pipeline architecture of ADC.[5]
 - (b) Consider the 5-bit charge redistribution converter with V_{REF} = 4V what is the voltage increment appearing on the top plate when S₅ is switched?
 What is the full-scale voltage of this converter ?

BIEL-012

(2)

If $V_{a} = 2.5V$, which switches will be connected to

V_{REF} at the end of conversion ? [5]

- (a) Explain the static and dynamic characteristics of a comparator. [5]
 - (b) Draw the CMOS circuit of two stage comparator and explain its operation principle. Describe the frequency response of the two-stage, open-loop comparator. [5]
- (a) Design a CMOS circuit for analog multiplier and explain its working principle. [5]
 - (b) Describe the use of level shifting circuits in analog circuit design. [5]
- 7. (a) Explain the use of SNR (Signal to Noise Ratio) in analog circuit design. How SNR is improved using averaging of signal ? [5]

BIEL-012

5.

[P.T.O.]

- (b) Differentiate between decimating filters for ADC and interpolating filters for DAC. [5]
- 8. (a) How sub-micron CMOS circuit design is different from conventional CMOS circuit design ? Explain.
 [5]
 - (b) Describe the process flow of sub-micron CMOS circuit design using suitable diagram. [5]

----- x -----

BIEL-012

(4)

700