B. TECH. VIEP ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination June, 2019

BIEL-011 : LINEAR INTEGRATED CIRCUITS

Time : 3 Hours
 Maximum Marks : 70

Note : Attempt any seven questions. All questions carry equal marks. Use of scientific calculator is permitted. Missing data, if any, may be suitably assumed.

1. (a) With a neat circuit diagram, explain the operation of emitter coupled differential amplifier.
(b) Calculate the current I in the given circuit: 5

Given $\beta_{1}=220=\beta_{2}$

2. Draw the block diagram representation of op-amp. and explain the function of block. $4+6$
3. (a) Explain the effect of variation in power supply voltage on offset voltage.
(b) What is thermal drift? How does it affect the performance of an op-amp. circuit? 5
4. (a) Realize op-amp. as inverting adder and averaging amplifier.
(b) Draw the circuit diagram of an op-amp. adder circuit to provide $\mathrm{V}_{\text {out }}=-\mathrm{V}_{1}+3 \mathrm{~V}_{2}-5 \mathrm{~V}_{3}$, where $\mathrm{V}_{1}, \mathrm{~V}_{2}$ and V_{3} are the three inputs.
5. (a) Why are integrators preferred over differentiators ? Write down the various applications of integrators. 5
(b) Draw and explain the working of antilogarithmic amplifier using op-amp.
6. (a) What is the difference between compensated and non-compensated op-amp.?
(b) What is a slew rate ? List causes of the slew rate and explain its significance in applications.
7. Draw a block schematic of voltage controlled oscillator (VCO). Explain its working and derive an expression for its frequency. $3+4+3$
8. (a) What is meant by a filter? What are the advantages of an active filter over a passive filter? 5
(b) Draw the circuit diagram of square wave generator using op-amp. and explain its operation.
9. Draw a neat circuit diagram of a RC-phase shift oscillator and derive the expression for its condition of sustain oscillation and frequency of oscillation.
10. Write short notes on any two of the following :

$$
5 \text { each }
$$

(a) Level translator
(b) Evolution of Op-amp.
(c) Zero crossing detector
(d) Wien bridge oscillator

