B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination
June, 2019

BIEL-007 : SIGNALS AND SYSTEMS

Time: 3 hours
Maximum Marks : 70
Note: There are seven questions. Attempt any five questions. All questions carry equal marks. Use of scientific calculator is allowed.

1. (a) Examine whether the given signal is periodic or not. If periodic, then find out the period.

$$
x(t)=\sin (10 t+1)-2 \cos (5 t-2)
$$

(b) Determine the even and odd part of the signal

$$
\begin{equation*}
x(t)=\cos \left(\omega t+\frac{\pi}{3}\right) \tag{4}
\end{equation*}
$$

(c) State and prove the differentiation property of Fourier transform.
2. (a) Find the continuous time Fourier transform of the Gate/Rectangular signal.
Also plot its magnitude response. 10
(b) Check whether the system is linear or non-linear :

$$
\frac{2 d^{2} y(t)}{d t^{2}}+\frac{4 d y(t)}{d t}+3 y(t)=x(t+1)
$$

3. (a) Using Fourier transform, find the convolution of $x_{1}(t)=e^{-2 t} u(t)$

$$
\begin{equation*}
\mathrm{x}_{2}(\mathrm{t})=\mathrm{e}^{-3 \mathrm{t}} \mathrm{u}(\mathrm{t}) \tag{7}
\end{equation*}
$$

(b) Calculate the DTFT of the following using properties of DTFT :

$$
x(n)=u(n+3)-u(n-3)
$$

4. (a) Determine the total response of differential equation

$$
\frac{\mathrm{d}^{2} \mathrm{y}(\mathrm{t})}{\mathrm{dt}^{2}}+\frac{3 \mathrm{dy}(\mathrm{t})}{\mathrm{dt}}+2 \mathrm{y}(\mathrm{t})=\mathrm{x}(\mathrm{t})
$$

where $y(0)=3, y^{\prime}(0)=4, x(t)=4 e^{-2 t}$ and $\mathrm{t} \geq 0$.
(b) Calculate the convolution for the given sequences :

$$
\begin{aligned}
\mathrm{x}(\mathrm{n})= & 1 \text { for } \mathrm{n}=-2,0,1 \\
& 2 \text { for } \mathrm{n}=-1 \\
& 0 \text { else } \\
\mathrm{h}(\mathrm{n})= & \delta(\mathrm{n})-\delta(\mathrm{n}-1)+\delta(\mathrm{n}-2)-\delta(\mathrm{n}-3) .
\end{aligned}
$$

5. (a) Find the impulse response and frequency response of the following discrete time system :
$\mathrm{y}(\mathrm{n})-\mathrm{y}(\mathrm{n}-1)+\frac{3}{16} \mathrm{y}(\mathrm{n}-2)=\mathrm{x}(\mathrm{n})-\frac{1}{2} \mathrm{x}(\mathrm{n}-1)$
(b) Determine the minimum sampling frequency to be used to sample the signal $x(t)=100 \operatorname{sinc}^{2} 100 t$, if the signal $x(t)$ is to be recovered from the samples without any distortions.
6. (a) Determine the inverse z-transform using partial fraction method for
$X(z)=\frac{\left(\frac{1}{4}\right) z^{-1}}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-\frac{1}{4} z^{-1}\right)}$
for ROCs
(i) $|z|>\frac{1}{2}$
(ii) $|z|<\frac{1}{4}$
(iii) $\frac{1}{4}<|\mathrm{z}|<\frac{1}{2}$
(b) Check whether the system is static/dynamic and causal/non-causal and why.

$$
y(n)=\log _{10}|x(n)|
$$

7. (a) Using properties of z-transform, find z-transform and ROC of signal $x(n)=n \cdot 2^{n} \cdot \sin \left(\frac{n \pi}{2}\right) u(n)$. 7
(b) State and prove the following properties of z-transform :
(i) Convolution property
(ii) Frequency shifting
