No. of Printed Pages: 3

BIEL-001

Maximum Marks: 70

P.T.O.

B.Tech. (BTCSVI / BTECVI / BTELVI)

Term-End Examination

June, 2019

Time: 3 hours

BIEL-001: BASICS OF ELECTRONICS ENGINEERING

Note: Attempt any seven questions. All questions carry equal marks.			
1. (a)	Draw the energy band diagram of metalinsulator and semiconductor.		
(b)	Explain the generation of holes and electrons in an intrinsic semiconductor.	5 I 5	
2. (a)	What is Fermi level? Where does it lie in N type and P type semiconductors?	5	
(b)	How does Avalanche breakdown differ from Zener breakdown?	5	
BIEL-00	l 1 b	Τ.	

3.	Expla	ain any <i>two</i> of the following: 2×5	=10
	(a)	Tunnel Diode	
	(b)	Photodiode	
	(c)	LED	
4.	_	ain the construction and working of NPN sistor.	10
5.	open	ain the formation of barrier potential in an circuit PN junction diode. Also derive the	10
	expre	ession for potential barrier.	10
6.	Wha expr	t is full-wave rectifier? Derive the ession for rectifier efficiency and ripple	,
	facto		10
7.	(a)	Draw the circuit of common base transistor and explain its input output	
		characteristics.	5
	(b)	Explain the Hall effect. List the applications of Hall effect.	5
8.	(a)	Explain the working of capacitor filter and	
		inductor filter.	5
	(b)	Explain voltage regulation in series regulator. List the applications of voltage regulator.	

9. Explain any *two* of the following:

 $2 \times 5 = 10$

10

- (a) FET
- (b) MOSFET
- (c) Miller Theorem
- Compare CE, CB and CC configurations of a transistor. Draw I - V characteristics of each configuration. Also explain transit time effect.