B.TECH. CIVIL (WATER RESOURCES ENGINEERING)

Term-End Examination

June, 2019

ET-533(B) : OPEN CHANNEL FLOW

Time: $\mathbf{3}$ hours
Maximum Marks : 70
Note: Attempt any five questions. All questions carry equal marks. Use of scientific calculator is allowed.

$$
\begin{aligned}
& \text { 1. (a) } \begin{array}{l}
\text { Derive an expression for determining the } \\
\text { discharge passing through an open channel } \\
\text { and state the assumptions made therein. }
\end{array} .8 \text {. }
\end{aligned}
$$

(b) Give examples with neat sketches for a uniform, gradually varied, rapidly varied, spatially varied and unsteady flow.

2. (a) Derive the relationship between Manning's
and Chezy's constants.
(b) A 3.6 m . wide rectangular channel carries water to a depth of 1.8 m . In order to measure the discharge, the channel width is reduced to 2.4 m . and a hump of 0.3 m . height is provided in the bottom. Calculate the discharge if water surface in the contracted section drops by 0.15 m . Assume no losses.
3. (a) Discuss the conditions which may lead to the formation of surge waves in an open channel.
(b) If y_{1} and y_{2} are alternate depths in a 8 rectangular channel; show that $\frac{2 y_{1}^{2} y_{2}^{2}}{\left(y_{1}+y_{2}\right)}=y_{c}^{3}$ and hence the specific
energy, $\mathrm{E}=\frac{y_{1}^{2}+y_{1} y_{2}+y_{2}^{2}}{y_{1}+y_{2}}$
Where all symbols carry usual meaning.
4. (a) The velocity distribution along a vertical in 7 a channel can be expressed as $v / v_{\max }=\left(y / y_{0}\right)^{1 / n}$, where $y_{0}=$ depth of flow, v - velocity at any height, $y=$ height above the bed and n - a constant. Find the values of α and β.
(b) Explain how the phenomena of hydraulic 7 jump formation and travel of a translatory wave in an open channel are inter-related.
5. (a) Explain the following with examples: $2 \times 3=6$
(i) Velocity distribution and pressure distribution.
(ii) Prismatic channel and non-prismatic channel.
(b) A rectangular channel has a width of 2.0 m . and carries a discharge $4.8 \mathrm{~m}^{3} / \mathrm{sec}$. with a depth of 1.6 m . At a certain section a small smooth hump with a flat top and of height 0.10 m . is proposed to be built. Calculate the likely change in the water surface. Neglect the energy loss.
6. Explain the step wise procedure for computing of Gradually Varied Flow (GVF) by standard step method. Show the necessary figures and tables required for the computations.
7. (a) Discuss wave celerity, length and period 5 relationships with reference to wave propagation in an open channel.
(b) Find the critical depth for a specific energy of 2 m . in the following channels :
(i) Rectangular channel, $\mathrm{B}=2 \mathrm{~m}$.
(ii) Triangular channel, $\mathrm{m}=1.5$.
(iii) Trapezoidal channel, $\mathrm{B}=2.0 \mathrm{~m}$. and $\mathrm{m}=1.0$.
