B.Tech. CIVIL (Construction Management)/ B.Tech. CIVIL (Water Resources Engineering)

Term-End Examination, 2019

ET-502(B) : STRUCTURAL ANALYSIS

Time : 3 Hours]
[Maximum Marks : 70
Note : Answer any five questions. All questions carry equal marks. Use of Scientific Calculater is permitted.

1. A three hinged semicircular arch of radius R carries a uniformly distributed load of w per unit run over the whole span. Show that horizontal thrust is $\frac{\mathrm{wR}}{2}$.
2. Two wheel loads of 5 kN and 15 kN spaced 3 m apart move along the span of girder of 24 m as shown in figure-1.
Find the maximum bending moment that can occur at a section 9 m from the left end. Use influence line diagram to solve this problem.

Figure - 1

3. A fixed end beam of span L is subjected to uniformly distributed load of intensity w per unit run over the whole span as shown in figure-2. Calculate the fixed end moments at A and B by three moment equation.

Figure - 2
4. Analyse the portal frame shown in figure-3 by moment distribution method. The frame is fixed at A and D and has rigid Joints at B and C. El is constant. Draw the bending moment diagram also,

Figure - 3
5. Show that the strain energy stored in the bar as shown in the figure -4 is :

$$
\frac{7}{6} \times \frac{\mathrm{P}^{2} \mathrm{~L}}{\pi \mathrm{D}^{2} \mathrm{E}}
$$

Figure-4
6. A long column fixed at one end and hinged at the other is 150 cm long and has a solid rectangular section. Calculate the depter of the section, if it is 10 cm wide. Euler's crippling load is 30000 N . Assume, $\mathrm{E}=10^{6} \mathrm{~N} / \mathrm{cm}^{2}$
7. A propped cantilever beam of span L is fixed at A and propped at B. The beam carries a concentrated load P and uniformly distributed load of intensity of w per unit run as shown in figure-5. Both the supports are at the same level. Show that the reaction at the prop is :

$$
\frac{5 \mathrm{P}}{16}+\frac{3}{8} \mathrm{wl}
$$

Figure-5
8. (a) Show that the shape factor a triangular section is 2.34 .
(b) Show that the length of a plastic hinge for a simply supported rectangular beam loaded with a uniformly distributed load is equal to $\frac{L}{\sqrt{3}}$.

