00732

No. of Printed Pages : 4
E'T-502(A)
B.Tech. Civil (Construction Management) /
B.Tech. Civil (Water Resources Engineering)

Term-End Examination, 2019
ET-502 (A) : STRENGTH OF MATERIALS

Time : Three Hours]
|Maximum Marks: 70

Note : Attempt any five question. All questions carry equal marks. Use of scientific calculator is permitted. Assume any missing data suitably.

1. (a) Draw the stress-strain curve for a mild steel bar and label the salient points on the curve. [4+10]
(b) A rod 200 cm long and of diameter 3.0 cm is subjected to an axial pull of 30 kN . If the young's modulus of the material of the rod is $2 \times 10^{5} \mathrm{~N} /$ mm^{2}, determine.
(i) Stress,
(ii) Strain, and
(iii) The elongation of the rod
2. (a) What do you understand by "Poisson's ratio" ? Explain briefly.
(b) A rod is 3 m long at a temperature of $15^{\circ} \mathrm{C}$. Find the expansion of the rod, when the temperature is raised to $95^{\circ} \mathrm{C}$. If this expansion is prevented find the stress induced in the material of the rod.

Take $\mathrm{E}=1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, and
$\alpha=0.000012$ per degree centigrade .
3. (a) Write the assumptions of theory of Simple or Pure Bending.
(b) The principal tensile stresses at a point across two mutually perpendicular planes are $100 \mathrm{~N} / \mathrm{mm}^{2}$ and $50 \mathrm{~N} / \mathrm{mm}^{2}$.

Determine the normal, tangential and resultant stresses on a plane inclined at 30° to the axis of the minor principal stress.
4. (a) Define the terms Principal stress and Principal Strain.
[4+10]
(b) Calculate instantaneous stress produced in a bar $10 \mathrm{~cm}^{2}$ in area and 3 m long by the sudden
application of a tensile load of unknown magnitude, if the extension of the bar due to suddenly applied load is 1.5 mm . Also determine the suddenly applied load.

Take $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
5. (a) Differentiate between section modulus and flexural rigidity. [4+10]
(b) Draw the S.F. and B.M. diagrams for the beam which is loaded as shown in figure-1. Determine the points of contra flexure within the span $A B$

6. (a) Describe in brief the "Springs in series" and "Springs in parallel". [4+10]
(b) A steel plate of width 120 mm and of thickness 20 mm is bent into a circular arc of radius 10 m . Determine the maximum stress induced and the bending moment. Which will produce the maximum stress.

Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$

7. (a) Compute the ratio of modulus of rigidity to modulus of elasticity for a Poisson's ratio of 0.25 .

$$
[4+10]
$$

(b) The shearing stress in a solid shaft is not to exceed $45 \mathrm{~N} / \mathrm{mm}^{2}$ when the torque transmitted is 40000 N -m. Determine the minimum diameter of the shaft.
8. (a) Prove that the maximum shear stress in a rectangular section (subject to shear force F) is 1.5 times the average shear stress. [4+10]
(b) A solid round bar 4 m long and 6 cm in diameter is used as a strut with both ends hinged. Determine the crippling load.

Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

